Achieving wind power and photovoltaic power prediction: An intelligent prediction system based on a deep learning approach

粒子群优化 光伏系统 风力发电 计算机科学 电力系统 水准点(测量) 人工智能 工程类 功率(物理) 算法 物理 大地测量学 量子力学 地理 电气工程
作者
Yagang Zhang,Zhiya Pan,Hui Wang,Jingchao Wang,Zheng Zhao,Fei Wang
出处
期刊:Energy [Elsevier BV]
卷期号:283: 129005-129005 被引量:11
标识
DOI:10.1016/j.energy.2023.129005
摘要

Accurately predicting wind and photovoltaic power is one of the keys to improving the economy of wind-solar complementary power generation system, reducing scheduling costs and no-load losses, and ensuring grid stability. However, the natural properties of energy result in complex fluctuations in their corresponding power sequences, making accurate predictions difficult. Therefore, this paper proposes an intelligent prediction system that combines decomposition algorithms and deep learning for ultra-short-term prediction of wind and photovoltaic power. First, an improved decomposition algorithm is proposed, based on fuzzy entropy's property that its value increases with the increase of sequence uncertainty, particle swarm optimization (PSO) is used to search for the optimal parameter combinations of variational modal decomposition (VMD), so that it can automatically adjust the parameters for energy data with different characteristics to reduce the human error. Then, a convolutional neural network (CNN) architecture that balances operational efficiency and prediction performance is constructed, and the hyperparameters of the CNN are optimized using the wild horse optimization algorithm (WHO) to improve the stability and accuracy of the prediction model. In this paper, real data from wind power plants and photovoltaic power plants in China are used as experimental objects, and experiments are carried out in three aspects, namely, benchmark model selection, decomposition algorithm comparison and combined model comparison. The results show that selecting CNN as the benchmark model is a good choice; the improved VMD has better decomposition performance than other state-of-the-art decomposition algorithms. The system proposed in this paper is highly generalizable and adaptive, and its prediction performance and accuracy greatly outperform that of other comparative models, with prediction accuracies improved by 72% and 79%, respectively, compared to a single CNN model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MShou发布了新的文献求助10
1秒前
2秒前
3秒前
东明完成签到,获得积分10
4秒前
斯文败类应助三日采纳,获得10
4秒前
yang发布了新的文献求助10
5秒前
东明发布了新的文献求助10
7秒前
刘雅妮发布了新的文献求助10
7秒前
杨帆宇发布了新的文献求助10
9秒前
yuan完成签到,获得积分20
9秒前
9秒前
you完成签到 ,获得积分10
10秒前
热心的飞风完成签到 ,获得积分10
10秒前
龍Ryu完成签到,获得积分10
10秒前
科目三应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
14秒前
15秒前
15秒前
朱先生发布了新的文献求助10
16秒前
19秒前
19秒前
三日发布了新的文献求助10
19秒前
无花果应助冷傲以珊采纳,获得30
19秒前
wwaakk完成签到 ,获得积分10
19秒前
夕云发布了新的文献求助10
22秒前
22秒前
大模型应助yang采纳,获得10
22秒前
小王同学完成签到 ,获得积分10
24秒前
大模型应助NeuroYan采纳,获得10
24秒前
24秒前
30秒前
所所应助小黑采纳,获得10
31秒前
32秒前
Owen应助三日采纳,获得10
35秒前
12355发布了新的文献求助10
35秒前
天天完成签到 ,获得积分10
36秒前
葫芦娃完成签到 ,获得积分10
40秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783164
求助须知:如何正确求助?哪些是违规求助? 3328499
关于积分的说明 10236697
捐赠科研通 3043596
什么是DOI,文献DOI怎么找? 1670599
邀请新用户注册赠送积分活动 799766
科研通“疑难数据库(出版商)”最低求助积分说明 759119