Intention-convolution and hybrid-attention network for vehicle trajectory prediction

弹道 计算机科学 联营 卷积(计算机科学) 光学(聚焦) 人工智能 运动(物理) 期限(时间) 机器学习 国家(计算机科学) 算法 人工神经网络 天文 量子力学 光学 物理
作者
Chao Li,Zhanwen Liu,Shan Lin,Yang Wang,Xiangmo Zhao
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:236: 121412-121412 被引量:18
标识
DOI:10.1016/j.eswa.2023.121412
摘要

Trajectory prediction aims to estimate the future location of the vehicle based on its historical motion state, which is essential for driving decision-making and local motion planning of smart vehicles. However, affected by the multiple complex interaction in the traffic scene, predicting future trajectory accurately is a challenging task. The majority of existing methods only focus on modeling the inter-vehicle interaction, while ignoring the influence of road alignment and driver's lane-change intention, making the poor performance of models, especially for long-term prediction or when the vehicle maneuvers laterally. To overcome the deficiencies, this paper proposes Intention-convolution and Hybrid-Attention Network (IH-Net) for reliable trajectory prediction. Specifically, we analyze the correlation of lane-change behavior and the motion state of the vehicle, and then the Intention-convolutional Social Pooling module (I-CS) is introduced to extract complete interaction including the driver's lane-change intention and inter-vehicle interaction. In addition, we construct a novel Hybrid Attention Mechanism (H-AM) to explore the trajectory periodicity formed under the restriction of road alignment, as well as the impacts of different features on trajectory prediction, which is used to improve the model's long-term prediction capacity. The model's prediction accuracy with RMSE loss function is tested on two public datasets NGSIM and highD, and the results demonstrate that IH-Net remarkably outperforms the state-of-art methods in long-term prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王妍完成签到 ,获得积分10
2秒前
allia完成签到 ,获得积分10
2秒前
kevin完成签到,获得积分10
3秒前
江雁完成签到,获得积分10
4秒前
kc135完成签到,获得积分10
4秒前
Zo完成签到,获得积分10
7秒前
既白完成签到 ,获得积分10
7秒前
Yara.H完成签到 ,获得积分10
7秒前
张一完成签到,获得积分10
9秒前
10秒前
懒癌晚期完成签到,获得积分10
11秒前
tonight完成签到 ,获得积分0
11秒前
知非完成签到 ,获得积分10
11秒前
wenwenwang完成签到 ,获得积分10
11秒前
进退须臾完成签到,获得积分10
11秒前
wjswift完成签到,获得积分10
12秒前
尔尔完成签到 ,获得积分10
12秒前
蒲公英完成签到 ,获得积分10
13秒前
yellow完成签到,获得积分10
14秒前
const完成签到,获得积分10
15秒前
123完成签到 ,获得积分10
18秒前
辛勤谷雪完成签到,获得积分10
18秒前
尹冰露完成签到,获得积分10
18秒前
chenjzhuc应助叶叶采纳,获得30
19秒前
yifan92完成签到,获得积分10
20秒前
339564965完成签到,获得积分10
21秒前
wz完成签到,获得积分10
22秒前
万能图书馆应助wjswift采纳,获得10
23秒前
ccc完成签到,获得积分10
23秒前
ghy完成签到 ,获得积分10
23秒前
学习之人完成签到,获得积分0
24秒前
舒心的久完成签到 ,获得积分10
24秒前
徐涛完成签到 ,获得积分10
25秒前
倪小呆完成签到 ,获得积分10
26秒前
只想顺利毕业的科研狗完成签到,获得积分10
26秒前
27秒前
lucia5354完成签到,获得积分10
27秒前
TianFuAI完成签到,获得积分10
27秒前
研友_ZA2B68完成签到,获得积分10
28秒前
chenkj完成签到,获得积分10
28秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Interpretability and Explainability in AI Using Python 200
SPECIAL FEATURES OF THE EXCHANGE INTERACTIONS IN ORTHOFERRITE-ORTHOCHROMITES 200
Null Objects from a Cross-Linguistic and Developmental Perspective 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833955
求助须知:如何正确求助?哪些是违规求助? 3376373
关于积分的说明 10492814
捐赠科研通 3095877
什么是DOI,文献DOI怎么找? 1704767
邀请新用户注册赠送积分活动 820104
科研通“疑难数据库(出版商)”最低求助积分说明 771859