Similarity learning hidden semi-Markov model for adaptive prognostics of composite structures

预言 离群值 相似性(几何) 非参数统计 隐马尔可夫模型 计算机科学 结构健康监测 试验数据 隐半马尔可夫模型 过程(计算) 人工智能 数据挖掘 机器学习 马尔可夫链 模式识别(心理学) 马尔可夫模型 工程类 变阶马尔可夫模型 数学 统计 结构工程 图像(数学) 程序设计语言 操作系统
作者
Nick Eleftheroglou,Georgios Galanopoulos,Θεόδωρος Λούτας
出处
期刊:Reliability Engineering & System Safety [Elsevier]
卷期号:243: 109808-109808 被引量:21
标识
DOI:10.1016/j.ress.2023.109808
摘要

Data-driven methodologies have found increasing usage in the last decade for remaining useful life (RUL) prognostics of composite materials utilizing structural health monitoring (SHM) data. Of particular interest is the reliable RUL prediction in cases where the end-of-life is not in between the extreme values within the testing dataset. For example, when unexpected phenomena that severely compromise the structural integrity occur during the service life. Such cases are often referred as outliers and the RUL prognosis based on a data-driven model that learns from past data is often erroneous. This study addresses this challenge by proposing a new stochastic model; the Similarity Learning Hidden Semi Markov Model (SLHSMM), an extension of the Non-Homogenous Hidden Semi Markov Model (NHHSMM). Through the utilization of a nonparametric discrete distribution, which characterizes the similarity between the testing structure and the training structures, a dynamic re-estimation process is employed. This process assigns higher importance to the training structures that display greater similarity to the testing one. As a result, the estimated parameters effectively capture the specific characteristics of the testing structure. The training and testing SHM data sets consist of strain measurements collected from a case study where carbon–epoxy single-stringered panels, are subjected to constant, variable, and random amplitude fatigue loading until failure. RUL estimations from the SLHSMM, the NHHSMM, and the Gaussian Process Regression (GPR) are compared. The SLHSMM clearly outperforms its classical counterpart and GPR providing more accurate outlier and inlier prognostics, demonstrating its capability to adapt to unexpected phenomena and integrate unforeseen data into a prognostic platform.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
平常的灵凡完成签到,获得积分10
刚刚
瘦瘦初珍发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
1秒前
香香香完成签到,获得积分10
1秒前
liu完成签到,获得积分10
3秒前
4秒前
在水一方应助木木采纳,获得10
4秒前
4秒前
所所应助局内人采纳,获得10
4秒前
xly完成签到,获得积分10
5秒前
5秒前
风清扬发布了新的文献求助10
5秒前
dlzheng完成签到 ,获得积分10
6秒前
zkyyinf_zero完成签到,获得积分10
6秒前
pluto应助科研通管家采纳,获得10
7秒前
瘪良科研完成签到,获得积分10
7秒前
SCINEXUS应助科研通管家采纳,获得50
7秒前
Jared应助科研通管家采纳,获得10
7秒前
烟花应助科研通管家采纳,获得10
8秒前
Zhang完成签到,获得积分10
8秒前
8秒前
pluto应助科研通管家采纳,获得10
8秒前
Jared应助科研通管家采纳,获得10
8秒前
9秒前
9秒前
浮游应助科研通管家采纳,获得10
9秒前
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
17发布了新的文献求助10
10秒前
BowieHuang应助科研通管家采纳,获得10
10秒前
情怀应助科研通管家采纳,获得10
10秒前
11秒前
pluto应助科研通管家采纳,获得10
11秒前
Jared应助科研通管家采纳,获得10
11秒前
11秒前
SciGPT应助科研通管家采纳,获得10
12秒前
核桃应助墩墩焘采纳,获得10
12秒前
Xu发布了新的文献求助10
12秒前
pluto应助科研通管家采纳,获得10
12秒前
浮游应助科研通管家采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
Improving Teacher Morale and Motivation 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5556476
求助须知:如何正确求助?哪些是违规求助? 4640997
关于积分的说明 14664117
捐赠科研通 4583028
什么是DOI,文献DOI怎么找? 2513870
邀请新用户注册赠送积分活动 1488356
关于科研通互助平台的介绍 1459088