Real-Time Gearbox Defect Detection Using IIoT-Based Condition Monitoring System

停工期 可靠性 状态监测 故障排除 计算机科学 预测性维护 可靠性工程 分析 故障检测与隔离 状态维修 实时计算 工程类 风险分析(工程) 人工智能 数据挖掘 医学 执行机构 电气工程
作者
P. Sivaraman,P. Ilakiya,M.K. Prabhu,Adarsh Ajayan
出处
期刊:SAE technical paper series 被引量:1
标识
DOI:10.4271/2023-01-5057
摘要

<div class="section abstract"><div class="htmlview paragraph">In order to guarantee the dependability and effectiveness of industrial machinery, real-time gearbox malfunction detection is extremely important. Traditional approaches to condition monitoring systems sometimes rely on time-consuming human inspections or routine maintenance, which can result in unanticipated failures and expensive downtime. The rise of the industrial Internet of things (IIoT) in recent years has paved the way for more sophisticated and automated monitoring methods. An IIoT-based condition monitoring system is suggested in this study for real-time gearbox failure detection. The gearbox health state is continually monitored by the system using sensor data from the gearbox, such as temperature, vibration, and oil analysis. Real-time transmission of the gathered data is made to a central monitoring hub, where sophisticated analytics algorithms are used to look for any flaws.</div><div class="htmlview paragraph">This study’s potential to improve the dependability and operational effectiveness of industrial gear is what makes it so significant. Real-time defect identification makes it possible to undertake maintenance tasks preemptively, avoiding catastrophic failures and cutting down on downtime. This reduces not just the expenses of unanticipated maintenance but also boosts general productivity and client happiness. The uniqueness of this study comes from the way sophisticated analytics and IIoT technologies were used to find gearbox defects. Despite the literature’s exploration of IIoT-based condition monitoring systems, this work focuses especially on gearbox defect detection, which presents special difficulties because of complicated mechanical dynamics and the existence of several failure scenarios. The suggested methodology provides a thorough and automated method that can precisely identify and diagnose gearbox faults, leading to timely maintenance actions and increased operational reliability. Overall, employing IIoT-based condition monitoring, this work offers a unique and useful method for real-time gearbox failure diagnosis. The results of this study can help improve industrial maintenance procedures, which will enhance machinery performance and decrease downtime across a variety of industries, including manufacturing, energy, and transportation.</div></div>

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
神奇宝贝发布了新的文献求助10
刚刚
新城吴完成签到,获得积分10
1秒前
王灿灿完成签到,获得积分10
1秒前
Tony12发布了新的文献求助10
2秒前
ecauscibe完成签到,获得积分10
2秒前
欣慰妙海完成签到 ,获得积分10
3秒前
3秒前
4秒前
健身哥发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
LL完成签到 ,获得积分10
6秒前
赘婿应助you采纳,获得10
6秒前
Hello应助阳生采纳,获得10
6秒前
RoyChen发布了新的文献求助10
6秒前
7秒前
李爱国应助神奇宝贝采纳,获得10
7秒前
joinn发布了新的文献求助10
8秒前
QinjunChu关注了科研通微信公众号
9秒前
沉淀完成签到,获得积分20
9秒前
10秒前
10秒前
mumufan发布了新的文献求助10
10秒前
马宇飞发布了新的文献求助10
10秒前
无心的鬼神完成签到,获得积分10
11秒前
搜集达人应助JD采纳,获得10
11秒前
kk发布了新的文献求助10
12秒前
雅迪发布了新的文献求助10
12秒前
12秒前
jiang给关山月的求助进行了留言
12秒前
13秒前
joinn完成签到,获得积分10
13秒前
物质决定意识完成签到,获得积分10
15秒前
卫化蛹完成签到,获得积分10
15秒前
16秒前
Hmbb完成签到,获得积分10
16秒前
17秒前
17秒前
健身哥发布了新的文献求助10
19秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 530
Beyond The Sentence: Discourse And Sentential Form 500
求 5G-Advanced NTN空天地一体化技术 pdf版 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4069634
求助须知:如何正确求助?哪些是违规求助? 3608538
关于积分的说明 11457511
捐赠科研通 3328967
什么是DOI,文献DOI怎么找? 1830039
邀请新用户注册赠送积分活动 900049
科研通“疑难数据库(出版商)”最低求助积分说明 819804