Masked Autoencoders for Point Cloud Self-supervised Learning

计算机科学 点云 人工智能 云计算 机器学习 点(几何) 几何学 数学 操作系统
作者
Yatian Pang,Wenxiao Wang,Francis E. H. Tay,Wei Liu,Yonghong Tian,Yuan Li
出处
期刊:Lecture Notes in Computer Science 卷期号:: 604-621 被引量:295
标识
DOI:10.1007/978-3-031-20086-1_35
摘要

AbstractAs a promising scheme of self-supervised learning, masked autoencoding has significantly advanced natural language processing and computer vision. Inspired by this, we propose a neat scheme of masked autoencoders for point cloud self-supervised learning, addressing the challenges posed by point cloud’s properties, including leakage of location information and uneven information density. Concretely, we divide the input point cloud into irregular point patches and randomly mask them at a high ratio. Then, a standard Transformer based autoencoder, with an asymmetric design and a shifting mask tokens operation, learns high-level latent features from unmasked point patches, aiming to reconstruct the masked point patches. Extensive experiments show that our approach is efficient during pre-training and generalizes well on various downstream tasks. The pre-trained models achieve 85.18% accuracy on ScanObjectNN and 94.04% accuracy on ModelNet40, outperforming all the other self-supervised learning methods. We show with our scheme, a simple architecture entirely based on standard Transformers can surpass dedicated Transformer models from supervised learning. Our approach also advances state-of-the-art accuracies by 1.5%–2.3% in the few-shot classification. Furthermore, our work inspires the feasibility of applying unified architectures from languages and images to the point cloud. Codes are available at https://github.com/Pang-Yatian/Point-MAE.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Archer完成签到,获得积分10
2秒前
研友_QLXe5n完成签到,获得积分10
3秒前
4秒前
科研通AI6应助无误采纳,获得10
4秒前
5秒前
希望天下0贩的0应助Bake采纳,获得10
5秒前
5秒前
无辜梨愁完成签到 ,获得积分10
7秒前
Mida发布了新的文献求助10
7秒前
9秒前
NEO发布了新的文献求助10
9秒前
钱煜祺发布了新的文献求助10
12秒前
蓝天应助阿尔文采纳,获得10
12秒前
明理萃发布了新的文献求助10
13秒前
Lucas应助LIYYYY采纳,获得10
16秒前
16秒前
16秒前
vuluv完成签到,获得积分10
16秒前
尹冰之发布了新的文献求助10
17秒前
临妤完成签到,获得积分20
17秒前
科研通AI6应助刘歌采纳,获得10
18秒前
19秒前
JamesPei应助科研通管家采纳,获得10
20秒前
Owen应助科研通管家采纳,获得30
20秒前
SciGPT应助科研通管家采纳,获得10
20秒前
大模型应助科研通管家采纳,获得10
20秒前
CAOHOU应助科研通管家采纳,获得10
20秒前
Orange应助科研通管家采纳,获得10
20秒前
我是老大应助科研通管家采纳,获得10
21秒前
YY发布了新的文献求助10
21秒前
小明应助科研通管家采纳,获得10
21秒前
CAOHOU应助科研通管家采纳,获得10
21秒前
传奇3应助科研通管家采纳,获得10
21秒前
华仔应助科研通管家采纳,获得10
21秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
SciGPT应助科研通管家采纳,获得10
21秒前
21秒前
丘比特应助科研通管家采纳,获得10
21秒前
传奇3应助科研通管家采纳,获得10
21秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Research Handbook on Law and Political Economy Second Edition 398
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4538862
求助须知:如何正确求助?哪些是违规求助? 3973139
关于积分的说明 12307992
捐赠科研通 3639931
什么是DOI,文献DOI怎么找? 2004247
邀请新用户注册赠送积分活动 1039622
科研通“疑难数据库(出版商)”最低求助积分说明 928862