A mechanically durable hybrid hydrogel electrolyte developed by controllable accelerated polymerization mechanism towards reliable aqueous zinc-ion battery

材料科学 电解质 聚合 硫化 化学工程 单体 极限抗拉强度 聚丙烯酰胺 复合材料 高分子化学 聚合物 电极 天然橡胶 化学 工程类 物理化学
作者
Shanguo Ji,Jiaxiang Qin,Shangshan Yang,Ping Shen,Yuanyuan Hu,Kai Yang,Hao Luo,Jing Xu
出处
期刊:Energy Storage Materials [Elsevier BV]
卷期号:55: 236-243 被引量:53
标识
DOI:10.1016/j.ensm.2022.11.050
摘要

Increasing boom of bendable, safe and economical aqueous energy storage devices puts forward more demands on the tolerance of hydrogel electrolytes. However, the development of such robust hydrogel electrolytes still remains a challenging risk due to the vulnerability of mechanical deformation and complex preparation process. Herein, we present a controllable accelerated polymerization (CAP) mechanism to fabricate the polyacrylamide (PAM)-based hybrid hydrogel electrolytes by one-step process within one minute at room temperature. The rapid free-radical reaction of acrylamide monomer is triggered by the high concentration of electrolyte salt (ZnSO4) benefiting from the collaboration of Zn2+ and SO42− which is proved by both a serious of experimental characterizations and theoretical calculations. A rigid and hydrophilic Na-montmorillonite lamella and ZnSO4 salt plasticized PAM-based (MMT-PAM) hybrid hydrogel electrolyte is prepared with a short gelation time (∼1 min). The MMT-PAM hydrogel electrolyte presents significantly enhanced mechanical properties (a tensile strength of 0.25 MPa, a compressive strength of 0.39 MPa, an elongation rate of 1075%, high storage modulus, and loss modulus) and high Zn2+ conductivity of 20.7 mS cm−1, which conduce to suppress the random growth of Zn dendrite. Consequently, the fabricated Zn//NaV3O8·1.5H2O batteries with MMT-PAM hydrogel achieve significantly boosted cycle stability and rate capability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
眯眯眼的衬衫应助陶一二采纳,获得10
1秒前
薛枏发布了新的文献求助20
1秒前
自觉巨人应助小海绵采纳,获得10
1秒前
SciGPT应助leihai采纳,获得10
2秒前
3秒前
4秒前
5秒前
Jasper应助哭唧唧采纳,获得10
5秒前
6秒前
梨里完成签到 ,获得积分10
6秒前
6秒前
8秒前
lingyu完成签到,获得积分10
8秒前
9秒前
小二郎应助琛zyc123采纳,获得10
10秒前
lingyu发布了新的文献求助10
11秒前
13秒前
littlechu发布了新的文献求助30
14秒前
wanci应助兴奋柜子采纳,获得30
15秒前
15秒前
华仔应助0x1orz采纳,获得10
17秒前
17秒前
科研助手6应助hhh采纳,获得10
17秒前
尽快看看发布了新的文献求助10
18秒前
老猫发布了新的文献求助10
18秒前
LIN发布了新的文献求助10
21秒前
YUMMY完成签到,获得积分10
21秒前
23秒前
英姑应助科研通管家采纳,获得10
23秒前
23秒前
打打应助科研通管家采纳,获得10
23秒前
慕青应助科研通管家采纳,获得10
23秒前
CipherSage应助科研通管家采纳,获得10
23秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
24秒前
24秒前
隐形曼青应助科研通管家采纳,获得10
24秒前
24秒前
24秒前
高分求助中
ФОРМИРОВАНИЕ АО "МЕЖДУНАРОДНАЯ КНИГА" КАК ВАЖНЕЙШЕЙ СИСТЕМЫ ОТЕЧЕСТВЕННОГО КНИГОРАСПРОСТРАНЕНИЯ 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Research on WLAN scenario optimisation policy based on IoT smart campus 500
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3906027
求助须知:如何正确求助?哪些是违规求助? 3451606
关于积分的说明 10865426
捐赠科研通 3176966
什么是DOI,文献DOI怎么找? 1755185
邀请新用户注册赠送积分活动 848686
科研通“疑难数据库(出版商)”最低求助积分说明 791203