Image De-hazing techniques for Vision based applications - A survey

能见度 计算机科学 计算机视觉 人工智能 薄雾 图像处理 清晰 图像质量 图像(数学) 生物化学 光学 物理 气象学 化学
作者
Santhosh Krishna B V,B Rajalakshmi,U Dhammini,M.K Monika,C Nethra,K. Ashok
标识
DOI:10.1109/iconat57137.2023.10080156
摘要

Haze is defined as a poor condition described by an iridescent atmospheric appearance that reduces clarity and visibility. The main reason for this is lot of toxic elements like dust particles, smoke in the atmosphere scattering and absorbing sun light. This poor intelligibility causes various computer vision applications to fail, including intelligent transportation, video surveillance, element recognition, and in a method to perform operations on image to get better image. There is a problem in domain of image processing wherein image recovery by various degradations is a challenge. Pictures and videos taken in outdoor environments usually suffer from reduced contrast, faded colors and with reduced visibility due to airborne particles, which directly affect image quality. This can lead to problems recognizing objects captured in blurry or still images. Several images clean up techniques have been developed to solve this problem, each with their own strengths and weaknesses, but effective image recovery is daunting task. Recently, many learning-based methods (predictive analytics and natural language processing) have tried to overcome the shortcomings of mechanical representation of properties and alleviated the challenge of efficiently reconstructing images by spending with reduce cost and comparatively reduced time. This overview delves into latest techniques for imaging with no-fog. In addition, hardware execution of many real time dehaze methods have been methodically outlined by this paper. The study done in this paper paves a way for researches in image dehazing domain as-well-as will direct them for doing further enhancement on the basis of achievements done currently.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yuki酱发布了新的文献求助10
刚刚
小新发布了新的文献求助10
1秒前
打打应助小闲鱼采纳,获得10
2秒前
李超杰应助c333采纳,获得10
2秒前
香蕉觅云应助Mine采纳,获得10
3秒前
zoey发布了新的文献求助10
3秒前
万能图书馆应助JggHoo采纳,获得10
3秒前
4秒前
zgnh完成签到,获得积分10
5秒前
三石完成签到,获得积分10
6秒前
科目三应助后知后觉采纳,获得10
6秒前
wangzijin完成签到,获得积分10
6秒前
6秒前
哈哈哈完成签到 ,获得积分10
7秒前
清水发布了新的文献求助10
8秒前
我是老大应助WAM采纳,获得10
9秒前
10秒前
优雅老六完成签到,获得积分10
11秒前
11秒前
充电宝应助彭丽平采纳,获得10
11秒前
ws340822发布了新的文献求助10
11秒前
12秒前
浮熙完成签到 ,获得积分10
12秒前
Sunflower完成签到,获得积分10
14秒前
情怀应助麻辣小龙虾采纳,获得10
15秒前
嘿嘿应助Ying采纳,获得10
15秒前
00发布了新的文献求助10
15秒前
16秒前
16秒前
深情安青应助纯情的若风采纳,获得10
17秒前
坚强的绿兰完成签到,获得积分20
17秒前
Mine发布了新的文献求助10
18秒前
大个应助十九岁的时差采纳,获得10
18秒前
19秒前
19秒前
昔年完成签到,获得积分10
20秒前
能干的熊猫完成签到,获得积分20
20秒前
20秒前
所所应助清水采纳,获得10
20秒前
JggHoo发布了新的文献求助10
21秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 1000
Global Eyelash Assessment scale (GEA) 1000
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Materials for Green Hydrogen Production 2026-2036: Technologies, Players, Forecasts 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4050360
求助须知:如何正确求助?哪些是违规求助? 3588632
关于积分的说明 11403679
捐赠科研通 3314956
什么是DOI,文献DOI怎么找? 1823442
邀请新用户注册赠送积分活动 895440
科研通“疑难数据库(出版商)”最低求助积分说明 816807