Image De-hazing techniques for Vision based applications - A survey

能见度 计算机科学 计算机视觉 人工智能 薄雾 图像处理 清晰 图像质量 图像(数学) 生物化学 光学 物理 气象学 化学
作者
Santhosh Krishna B V,B Rajalakshmi,U Dhammini,M.K Monika,C Nethra,K. Ashok
标识
DOI:10.1109/iconat57137.2023.10080156
摘要

Haze is defined as a poor condition described by an iridescent atmospheric appearance that reduces clarity and visibility. The main reason for this is lot of toxic elements like dust particles, smoke in the atmosphere scattering and absorbing sun light. This poor intelligibility causes various computer vision applications to fail, including intelligent transportation, video surveillance, element recognition, and in a method to perform operations on image to get better image. There is a problem in domain of image processing wherein image recovery by various degradations is a challenge. Pictures and videos taken in outdoor environments usually suffer from reduced contrast, faded colors and with reduced visibility due to airborne particles, which directly affect image quality. This can lead to problems recognizing objects captured in blurry or still images. Several images clean up techniques have been developed to solve this problem, each with their own strengths and weaknesses, but effective image recovery is daunting task. Recently, many learning-based methods (predictive analytics and natural language processing) have tried to overcome the shortcomings of mechanical representation of properties and alleviated the challenge of efficiently reconstructing images by spending with reduce cost and comparatively reduced time. This overview delves into latest techniques for imaging with no-fog. In addition, hardware execution of many real time dehaze methods have been methodically outlined by this paper. The study done in this paper paves a way for researches in image dehazing domain as-well-as will direct them for doing further enhancement on the basis of achievements done currently.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘻嘻发布了新的文献求助10
刚刚
chen给waneshi的求助进行了留言
刚刚
1秒前
1秒前
1秒前
sheng应助fzzzzf采纳,获得40
1秒前
猴子大王666完成签到,获得积分10
2秒前
tangli发布了新的文献求助10
3秒前
3秒前
lihanyan666发布了新的文献求助10
5秒前
5秒前
123456777完成签到 ,获得积分10
5秒前
chen举报waneshi求助涉嫌违规
7秒前
共享精神应助靳欣妍采纳,获得10
8秒前
玖月完成签到,获得积分10
9秒前
12秒前
Jasper应助lihanyan666采纳,获得10
13秒前
李爱国应助张雯思采纳,获得10
13秒前
小蘑菇应助张雯思采纳,获得10
13秒前
深情安青应助张雯思采纳,获得10
13秒前
天天快乐应助张雯思采纳,获得10
13秒前
ding应助张雯思采纳,获得10
13秒前
隐形曼青应助张雯思采纳,获得10
13秒前
科研通AI5应助张雯思采纳,获得10
14秒前
领导范儿应助科研通管家采纳,获得10
14秒前
无曲应助科研通管家采纳,获得20
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
喜悦的依琴完成签到,获得积分10
14秒前
14秒前
Akim应助科研通管家采纳,获得10
14秒前
小马甲应助科研通管家采纳,获得10
14秒前
李健应助科研通管家采纳,获得10
14秒前
14秒前
酷波er应助科研通管家采纳,获得10
14秒前
慕青应助科研通管家采纳,获得10
14秒前
科研助手6应助科研通管家采纳,获得10
14秒前
脑洞疼应助科研通管家采纳,获得20
14秒前
隐形曼青应助科研通管家采纳,获得10
14秒前
科研之光应助科研通管家采纳,获得10
15秒前
15秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
System of systems: When services and products become indistinguishable 300
How to carry out the process of manufacturing servitization: A case study of the red collar group 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3812481
求助须知:如何正确求助?哪些是违规求助? 3356992
关于积分的说明 10384882
捐赠科研通 3074184
什么是DOI,文献DOI怎么找? 1688647
邀请新用户注册赠送积分活动 812247
科研通“疑难数据库(出版商)”最低求助积分说明 766960