Transport of Organic Volatiles through Paper: Physics-Informed Neural Networks for Solving Inverse and Forward Problems

吸附 扩散 多孔介质 反向 人工神经网络 热力学 应用数学 常量(计算机编程) 计算机科学 生物系统 材料科学 吸附 数学 物理 化学 多孔性 物理化学 有机化学 人工智能 几何学 程序设计语言 生物
作者
Alexandra Serebrennikova,Raimund Teubler,Lisa Hoffellner,Erich Leitner,Ulrich Hirn,Karin Zojer
出处
期刊:Transport in Porous Media [Springer Nature]
卷期号:145 (3): 589-612 被引量:8
标识
DOI:10.1007/s11242-022-01864-7
摘要

Abstract Transport of volatile organic compounds (VOCs) through porous media with active surfaces takes place in many important applications, such as in cellulose-based materials for packaging. Generally, it is a complex process that combines diffusion with sorption at any time. To date, the data needed to use and validate the mathematical models proposed in literature to describe the mentioned processes are scarce and have not been systematically compiled. As an extension of the model of Ramarao et al. (Dry Technol 21(10):2007–2056, 2003) for the water vapor transport through paper, we propose to describe the transport of VOCs by a nonlinear Fisher–Kolmogorov–Petrovsky–Piskunov equation coupled to a partial differential equation (PDE) for the sorption process. The proposed PDE system contains specific material parameters such as diffusion coefficients and adsorption rates as multiplication factors. Although these parameters are essential for solving the PDEs at a given time scale, not all of the required parameters can be directly deduced from experiments, particularly diffusion coefficients and sorption constants. Therefore, we propose to use experimental concentration data, obtained for the migration of dimethyl sulfoxide (DMSO) through a stack of paper sheets, to infer the sorption constant. These concentrations are considered as the outcome of a model prediction and are inserted into an inverse boundary problem. We employ Physics-Informed Neural Networks (PINNs) to find the underlying sorption constant of DMSO on paper from this inverse problem. We illustrate how to practically combine PINN-based calculations with experimental data to obtain trustworthy transport-related material parameters. Finally we verify the obtained parameter by solving the forward migration problem via PINNs and finite element methods on the relevant time scale and show the satisfactory correspondence between the simulation and experimental results.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Nanami24发布了新的文献求助10
2秒前
xuxuxu发布了新的文献求助10
2秒前
亚婷儿完成签到,获得积分10
3秒前
Gu发布了新的文献求助10
3秒前
3秒前
blackddl应助吴嘻嘻采纳,获得10
4秒前
4秒前
5秒前
隐形元绿完成签到 ,获得积分10
8秒前
lll完成签到,获得积分10
8秒前
魏佳旭完成签到,获得积分10
9秒前
田様应助科研通管家采纳,获得10
9秒前
丘比特应助科研通管家采纳,获得10
9秒前
东方元语应助科研通管家采纳,获得20
9秒前
10秒前
一叶知秋应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
充电宝应助科研通管家采纳,获得10
10秒前
爆米花应助科研通管家采纳,获得10
10秒前
糖人完成签到,获得积分10
10秒前
10秒前
一叶知秋应助科研通管家采纳,获得10
10秒前
东方元语应助科研通管家采纳,获得20
10秒前
Akim应助科研通管家采纳,获得10
10秒前
852应助科研通管家采纳,获得30
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
一叶知秋应助科研通管家采纳,获得10
10秒前
ll完成签到,获得积分10
10秒前
斯文败类应助科研通管家采纳,获得10
10秒前
充电宝应助科研通管家采纳,获得30
10秒前
10秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
Dave发布了新的文献求助10
11秒前
彭于晏应助科研通管家采纳,获得10
11秒前
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
Orange应助科研通管家采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5533159
求助须知:如何正确求助?哪些是违规求助? 4621584
关于积分的说明 14579174
捐赠科研通 4561639
什么是DOI,文献DOI怎么找? 2499444
邀请新用户注册赠送积分活动 1479295
关于科研通互助平台的介绍 1450504