Deep learning radiomics under multimodality explore association between muscle/fat and metastasis and survival in breast cancer patients

医学 转移 生物标志物 乳腺癌 癌症 内科学 肌萎缩 远处转移 肿瘤科 胸大肌 临床意义 放射科 病理 生物化学 化学
作者
Shidi Miao,Haobo Jia,Ke Cheng,Xiaohui Hu,Jing Li,Wenjuan Huang,Ruitao Wang
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (6) 被引量:12
标识
DOI:10.1093/bib/bbac432
摘要

Abstract Sarcopenia is correlated with poor clinical outcomes in breast cancer (BC) patients. However, there is no precise quantitative study on the correlation between body composition changes and BC metastasis and survival. The present study proposed a deep learning radiomics (DLR) approach to investigate the effects of muscle and fat on distant metastasis and death outcomes in BC patients. Image feature extraction was performed on 4th thoracic vertebra (T4) and 11th thoracic vertebra (T11) on computed tomography (CT) image levels by DLR, and image features were combined with clinical information to predict distant metastasis in BC patients. Clinical information combined with DLR significantly predicted distant metastasis in BC patients. In the test cohort, the area under the curve of model performance on clinical information combined with DLR was 0.960 (95% CI: 0.942–0.979, P < 0.001). The patients with distant metastases had a lower pectoral muscle index in T4 (PMI/T4) than in patients without metastases. PMI/T4 and visceral fat tissue area in T11 (VFA/T11) were independent prognostic factors for the overall survival in BC patients. The pectoralis muscle area in T4 (PMA/T4) and PMI/T4 is an independent prognostic factor for distant metastasis-free survival in BC patients. The current study further confirmed that muscle/fat of T4 and T11 levels have a significant effect on the distant metastasis of BC. Appending the network features of T4 and T11 to the model significantly enhances the prediction performance of distant metastasis of BC, providing a valuable biomarker for the early treatment of BC patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
七安发布了新的文献求助10
3秒前
5秒前
扫地888完成签到 ,获得积分10
5秒前
X1关注了科研通微信公众号
7秒前
8秒前
搞怪凡波发布了新的文献求助10
9秒前
NexusExplorer应助缓慢谷云采纳,获得10
9秒前
YamDaamCaa应助健壮涵柳采纳,获得30
11秒前
14秒前
雪白扬发布了新的文献求助10
15秒前
strug783完成签到,获得积分10
16秒前
直率的柚子完成签到,获得积分10
16秒前
杜杜发布了新的文献求助10
18秒前
qweqwe完成签到 ,获得积分10
18秒前
李故发布了新的文献求助10
19秒前
20秒前
Lucas应助zdl采纳,获得10
20秒前
岳苏佳发布了新的文献求助10
20秒前
脑洞疼应助怦然采纳,获得10
20秒前
InaZheng发布了新的文献求助30
21秒前
风清扬应助爱学习的曼卉采纳,获得30
21秒前
21秒前
风清扬应助爱学习的曼卉采纳,获得30
21秒前
lj发布了新的文献求助10
23秒前
24秒前
英姑应助厉害采纳,获得10
24秒前
Anker完成签到,获得积分10
25秒前
25秒前
酷波er应助杜杜采纳,获得10
25秒前
26秒前
X1发布了新的文献求助30
26秒前
充电宝应助跳跃虔采纳,获得10
27秒前
KKKKKkkk发布了新的文献求助30
28秒前
28秒前
29秒前
30秒前
CLMY完成签到,获得积分10
30秒前
30秒前
小蘑菇应助雪白扬采纳,获得10
34秒前
李里哩发布了新的文献求助10
34秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 530
Apiaceae Himalayenses. 2 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Tasteful Old Age:The Identity of the Aged Middle-Class, Nursing Home Tours, and Marketized Eldercare in China 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4079331
求助须知:如何正确求助?哪些是违规求助? 3618642
关于积分的说明 11484460
捐赠科研通 3335016
什么是DOI,文献DOI怎么找? 1833255
邀请新用户注册赠送积分活动 902532
科研通“疑难数据库(出版商)”最低求助积分说明 821125