Discovering geroprotectors through the explainable artificial intelligence-based platform AgeXtend

秀丽隐杆线虫 计算生物学 生物 衰老 细胞衰老 健康衰老 生物化学 遗传学 医学 基因 老年学 表型
作者
Sakshi Arora,Aayushi Mittal,Subhadeep Duari,Sonam Chauhan,Nilesh Kumar Dixit,Sanjay Kumar Mohanty,Arushi Sharma,Saveena Solanki,A. Sharma,Vishakha Gautam,Pushpendra Singh Gahlot,Shiva Satija,Jeet Nanshi,Nikita Kapoor,Lavanya CB,Debarka Sengupta,P. Mehrotra,Tarini Shankar Ghosh,Gaurav Ahuja
出处
期刊:Nature Aging
标识
DOI:10.1038/s43587-024-00763-4
摘要

Aging involves metabolic changes that lead to reduced cellular fitness, yet the role of many metabolites in aging is unclear. Understanding the mechanisms of known geroprotective molecules reveals insights into metabolic networks regulating aging and aids in identifying additional geroprotectors. Here we present AgeXtend, an artificial intelligence (AI)-based multimodal geroprotector prediction platform that leverages bioactivity data of known geroprotectors. AgeXtend encompasses modules that predict geroprotective potential, assess toxicity and identify target proteins and potential mechanisms. We found that AgeXtend accurately identified the pro-longevity effects of known geroprotectors excluded from training data, such as metformin and taurine. Using AgeXtend, we screened ~1.1 billion compounds and identified numerous potential geroprotectors, which we validated using yeast and Caenorhabditis elegans lifespan assays, as well as exploring microbiome-derived metabolites. Finally, we evaluated endogenous metabolites predicted as senomodulators using senescence assays in human fibroblasts, highlighting AgeXtend's potential to reveal unidentified geroprotectors and provide insights into aging mechanisms. Arora et al. present AgeXtend, an explainable artificial intelligence-based platform that leverages bioactivity data to predict geroprotectors. They validate potential geroprotectors identified using this platform in yeast, worm and senescence assays.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cdercder应助123669采纳,获得30
刚刚
刚刚
晨屿发布了新的文献求助10
刚刚
念想发布了新的文献求助10
1秒前
CC1219应助科研通管家采纳,获得10
1秒前
彭于晏应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
所所应助科研通管家采纳,获得10
1秒前
田様应助科研通管家采纳,获得10
1秒前
FashionBoy应助Johnyang采纳,获得10
2秒前
打打应助丰丰采纳,获得20
2秒前
郑小七完成签到,获得积分10
2秒前
4秒前
天天之家完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
mczhu完成签到,获得积分10
6秒前
田様应助大媛大靳吃地瓜采纳,获得10
6秒前
6秒前
英俊的铭应助allenise采纳,获得10
6秒前
今后应助DDDD采纳,获得10
7秒前
7秒前
7秒前
桐桐应助bing采纳,获得10
7秒前
8秒前
poohpooh发布了新的文献求助10
9秒前
9秒前
杨科完成签到,获得积分10
10秒前
10秒前
如意元霜发布了新的文献求助10
10秒前
打打应助Animagus采纳,获得10
11秒前
蔺子凡发布了新的文献求助10
11秒前
ZhouYW应助123123采纳,获得10
11秒前
gh应助123123采纳,获得10
11秒前
时行完成签到,获得积分10
11秒前
庚子鼠完成签到,获得积分10
12秒前
星辰大海应助lriye采纳,获得10
12秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790460
求助须知:如何正确求助?哪些是违规求助? 3335150
关于积分的说明 10273529
捐赠科研通 3051578
什么是DOI,文献DOI怎么找? 1674737
邀请新用户注册赠送积分活动 802803
科研通“疑难数据库(出版商)”最低求助积分说明 760907