How Industry Tackles Anomalies during Runtime: Approaches and Key Monitoring Parameters

钥匙(锁) 计算机科学 计算机安全
作者
Monika Steidl,Benedikt Dornauer,Michael Felderer,Rudolf Ramler,Mircea-Cristian Racasan,Marko Gattringer
标识
DOI:10.1109/seaa64295.2024.00062
摘要

Deviations from expected behavior during runtime, known as anomalies, have\nbecome more common due to the systems' complexity, especially for\nmicroservices. Consequently, analyzing runtime monitoring data, such as logs,\ntraces for microservices, and metrics, is challenging due to the large volume\nof data collected. Developing effective rules or AI algorithms requires a deep\nunderstanding of this data to reliably detect unforeseen anomalies. This paper\nseeks to comprehend anomalies and current anomaly detection approaches across\ndiverse industrial sectors. Additionally, it aims to pinpoint the parameters\nnecessary for identifying anomalies via runtime monitoring data.\n Therefore, we conducted semi-structured interviews with fifteen industry\nparticipants who rely on anomaly detection during runtime. Additionally, to\nsupplement information from the interviews, we performed a literature review\nfocusing on anomaly detection approaches applied to industrial real-life\ndatasets.\n Our paper (1) demonstrates the diversity of interpretations and examples of\nsoftware anomalies during runtime and (2) explores the reasons behind choosing\nrule-based approaches in the industry over self-developed AI approaches.\nAI-based approaches have become prominent in published industry-related papers\nin the last three years. Furthermore, we (3) identified key monitoring\nparameters collected during runtime (logs, traces, and metrics) that assist\npractitioners in detecting anomalies during runtime without introducing bias in\ntheir anomaly detection approach due to inconclusive parameters.\n

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美怀亦发布了新的文献求助10
刚刚
1秒前
孙传彬完成签到,获得积分10
1秒前
2秒前
2秒前
David发布了新的文献求助10
2秒前
2秒前
stone发布了新的文献求助10
2秒前
3秒前
zhuzhu发布了新的文献求助10
3秒前
pbj发布了新的文献求助10
4秒前
4秒前
4秒前
诗槐关注了科研通微信公众号
5秒前
jie酱拌面应助MooN采纳,获得10
5秒前
天天快乐应助要努力鸭采纳,获得10
6秒前
汉堡包应助平淡凡之采纳,获得10
6秒前
大大怪发布了新的文献求助10
6秒前
Lontano完成签到,获得积分10
6秒前
6秒前
wjx发布了新的文献求助10
7秒前
超级王国发布了新的文献求助10
7秒前
hjyylab发布了新的文献求助10
8秒前
李大帅完成签到 ,获得积分10
8秒前
彭于晏应助pbj采纳,获得10
9秒前
9秒前
Dandelion发布了新的文献求助10
9秒前
鱼鱼发布了新的文献求助20
9秒前
10秒前
我是老大应助悦之无因采纳,获得10
10秒前
wangshibing完成签到,获得积分10
11秒前
大个应助粉色娇嫩采纳,获得10
12秒前
zhuzhu完成签到,获得积分10
12秒前
max发布了新的文献求助50
13秒前
13秒前
梓轩发布了新的文献求助30
13秒前
Orange应助美满朝雪采纳,获得10
14秒前
打打应助兰理工采纳,获得10
14秒前
粥啊完成签到 ,获得积分10
14秒前
apiaji应助鹿lu采纳,获得20
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Aircraft Engine Design, Third Edition 308
戦後少女マンガ史 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5155682
求助须知:如何正确求助?哪些是违规求助? 4351420
关于积分的说明 13548562
捐赠科研通 4194198
什么是DOI,文献DOI怎么找? 2300446
邀请新用户注册赠送积分活动 1300362
关于科研通互助平台的介绍 1245379