A computationally efficient method for induction motor bearing fault detection based on parallel convolutions and semi-supervised GAN

感应电动机 方位(导航) 故障检测与隔离 计算机科学 断层(地质) 模式识别(心理学) 人工智能 工程类 电气工程 地质学 电压 地震学 执行机构
作者
Muhammad Irfan,Nabeel Ahmed Khan,Zohaib Mushtaq,Tareq Kareri,Salim Nasar Faraj Mursal,Ateeq-Ur-Rehman Shaheen,Shadi Alghaffari,Ayman F. Alghanmi,Faial Althobiani,H. M. Attar
出处
期刊:Nondestructive Testing and Evaluation [Taylor & Francis]
卷期号:: 1-27
标识
DOI:10.1080/10589759.2024.2427348
摘要

Accurate and timely bearing fault detection is imperative for optimal system functioning and the implementation of preventative maintenance measures. Deep learning models provide viable solutions to these malfunctions, however, the lack of labelled data makes the training both expensive and cumbersome. To remedy this, various semi-supervised approaches have surfaced in the last decade, significantly mitigating the need for extensive labelled data but with added computational cost. This study proposes one such approach by leveraging generative adversarial networks (GAN) trained on a time-frequency based representation. The proposed Parallel Convolutions Semi-Supervised GAN, namely PC-SSGAN, uses bottleneck parallel convolutions blocks to capture multi-scale features in both local and global contexts, lacing both the generator and discriminator with enhanced feature extraction capabilities and simultaneously reducing the parameters and training time. The Proposed framework is evaluated on two distinct open-source datasets. The classification accuracy for both models exceeded 99.50%. Moreover, the proposed parallel convolutions-based architecture spent approximately 33% less time on training than the normal convolutional layers. It has been foreseen that the proposed fault detection system can be integrated into the motor fault tolerant control system to produce a unified framework that can make informed decisions to handle the bearing faults effectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
圈圈黄完成签到,获得积分10
5秒前
6秒前
干净的烧鹅完成签到,获得积分10
8秒前
林攸之完成签到,获得积分10
8秒前
英俊的铭应助焰火青年采纳,获得30
17秒前
back you up应助小天采纳,获得150
17秒前
专注的胡萝卜完成签到 ,获得积分10
23秒前
大猪完成签到 ,获得积分10
27秒前
LLH完成签到,获得积分10
29秒前
祺王862完成签到,获得积分10
30秒前
30秒前
joleisalau发布了新的文献求助10
34秒前
冷傲老九完成签到,获得积分10
35秒前
小康找文献完成签到 ,获得积分10
38秒前
39秒前
阿童木完成签到,获得积分10
44秒前
小蘑菇应助Rafayel采纳,获得10
47秒前
hanchangcun完成签到,获得积分10
50秒前
50秒前
科研通AI5应助懦弱的难敌采纳,获得10
51秒前
MoodMeed完成签到 ,获得积分10
52秒前
sgt发布了新的文献求助10
53秒前
冷傲老九发布了新的文献求助10
55秒前
科研通AI5应助小天采纳,获得10
56秒前
1分钟前
大个应助科研通管家采纳,获得10
1分钟前
bkagyin应助科研通管家采纳,获得10
1分钟前
1分钟前
果果完成签到,获得积分10
1分钟前
PangSir完成签到,获得积分10
1分钟前
1分钟前
焰火青年发布了新的文献求助30
1分钟前
拉布拉多多不多完成签到,获得积分10
1分钟前
asplD完成签到,获得积分10
1分钟前
xiaoxiao完成签到 ,获得积分10
1分钟前
星辰大海应助老秦采纳,获得10
1分钟前
yuan发布了新的文献求助10
1分钟前
Orange应助hunajx采纳,获得10
1分钟前
研友_RLNzvL发布了新的文献求助30
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777983
求助须知:如何正确求助?哪些是违规求助? 3323609
关于积分的说明 10215097
捐赠科研通 3038781
什么是DOI,文献DOI怎么找? 1667645
邀请新用户注册赠送积分活动 798329
科研通“疑难数据库(出版商)”最低求助积分说明 758315