Deep Learning-Driven Insights into Enzyme–Substrate Interaction Discovery

一般化 机器学习 基质(水族馆) 适应性 训练集 生物医学 计算机科学 人工智能 生物 生物信息学 数学 数学分析 生态学
作者
Wenjia Qian,Xiaorui Wang,Yuansheng Huang,Yu Kang,Peichen Pan,Chang‐Yu Hsieh,Tingjun Hou
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:65 (1): 187-200
标识
DOI:10.1021/acs.jcim.4c01801
摘要

Enzymes are ubiquitous catalysts with enormous application potential in biomedicine, green chemistry, and biotechnology. However, accurately predicting whether a molecule serves as a substrate for a specific enzyme, especially for novel entities, remains a significant challenge. Compared with traditional experimental methods, computational approaches are much more resource-efficient and time-saving, but they often compromise on accuracy. To address this, we introduce the molecule–enzyme interaction (MEI) model, a novel machine learning framework designed to predict the probability that a given molecule is a substrate for a specified enzyme with high accuracy. Utilizing a comprehensive data set that encapsulates extensive information on enzymatic reactions and enzyme sequences, the MEI model seamlessly combines atomic environmental data with amino acid sequence features through an advanced attention mechanism within a hierarchical neural network. Empirical evaluations have confirmed that the MEI model outperforms the current state-of-the-art model by at least 6.7% in prediction accuracy and 8.5% in AUROC, underscoring its enhanced predictive capabilities. Additionally, the MEI model demonstrates remarkable generalization across data sets of varying qualities and sizes. This adaptability is further evidenced by its successful application in diverse areas, such as predicting interactions within the CYP450 enzyme family and achieving an outstanding accuracy of 90.5% in predicting the enzymatic breakdown of complex plastics within environmental applications. These examples illustrate the model's ability to effectively transfer knowledge from coarsely annotated enzyme databases to smaller, high-precision data sets, robustly modeling both sparse and high-quality databases. We believe that this versatility firmly establishes the MEI model as a foundational tool in enzyme research with immense potential to extend beyond its original scope.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
半眠日记发布了新的文献求助10
刚刚
科研通AI2S应助hahajiang采纳,获得10
3秒前
科研通AI2S应助zone采纳,获得10
3秒前
NexusExplorer应助蔡继海采纳,获得10
5秒前
小手冰凉发布了新的文献求助10
6秒前
科目三应助郭宇采纳,获得10
7秒前
半眠日记完成签到,获得积分20
9秒前
13秒前
慕青应助鹿友绿采纳,获得10
16秒前
16秒前
17秒前
大个应助凉白开采纳,获得10
17秒前
RW乾完成签到,获得积分10
19秒前
19秒前
19秒前
liusoojoo完成签到,获得积分10
21秒前
22秒前
xin发布了新的文献求助10
22秒前
日上三竿完成签到,获得积分10
23秒前
23秒前
LL发布了新的文献求助10
23秒前
小手冰凉完成签到,获得积分20
25秒前
激昂的野猪骑士完成签到,获得积分10
25秒前
waver发布了新的文献求助10
26秒前
冰魂应助明天会更美好采纳,获得10
27秒前
阿尔弗雷德完成签到 ,获得积分10
28秒前
greatsnow发布了新的文献求助10
29秒前
缓慢思枫发布了新的文献求助10
29秒前
万能图书馆应助一北采纳,获得10
31秒前
LL完成签到,获得积分10
34秒前
华仔应助小五屁孩儿采纳,获得10
36秒前
香蕉觅云应助小小的飞机采纳,获得10
37秒前
tkxfy完成签到,获得积分10
38秒前
科研通AI5应助LL采纳,获得10
39秒前
39秒前
加减乘除发布了新的文献求助10
39秒前
我爱学习完成签到 ,获得积分10
40秒前
坦率的访彤完成签到,获得积分10
42秒前
共享精神应助karcorl采纳,获得30
44秒前
一北发布了新的文献求助10
44秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776802
求助须知:如何正确求助?哪些是违规求助? 3322227
关于积分的说明 10209363
捐赠科研通 3037491
什么是DOI,文献DOI怎么找? 1666749
邀请新用户注册赠送积分活动 797627
科研通“疑难数据库(出版商)”最低求助积分说明 757976