间充质干细胞
小RNA
清道夫受体
骨髓
干细胞
多糖
细胞生物学
化学
生物
癌症研究
生物化学
免疫学
基因
脂蛋白
胆固醇
作者
Yue Wu,Dan Dan Chen,Longguang Li
标识
DOI:10.1177/10815589241229693
摘要
Morinda officinalis polysaccharide (MOP) is the bioactive ingredient extracted from the root of Morinda officinalis, and Morinda officinalis is applied to treat osteoporosis (OP). The purpose of this study was to determine the role of MOP on human bone marrow mesenchymal stem cells (hBMSCs) and the underlying mechanism. HBMSCs were isolated from bone marrow samples of patients with OP and treated with MOP. Quantitative real-time polymerase chain reaction was adopted to quantify the expression of microRNA-210-3p (miR-210-3p) and scavenger receptor class A member 3 (SCARA3) mRNA. Cell Counting Kit-8 assay was employed to detect cell viability; Terminal-deoxynucleotidyl Transferase Mediated Nick End Labeling assay and flow cytometry were adopted to detect apoptosis; Alkaline Phosphatase (ALP) activity assay kit was applied to detect ALP activity; Western blot was executed to quantify the expression levels of SCARA3, osteogenic and adipogenic differentiation markers. Ovariectomized rats were treated with MOP. Bone mineral density (BMD), serum tartrate-resistant acid phosphatase 5b (TRACP 5b), and N-telopeptide of type I collagen (NTx) levels were assessed by BMD detector and Enzyme-linked immunosorbent assay kits. It was revealed that MOP could promote hBMSCs’ viability and osteogenic differentiation and inhibit apoptosis and adipogenic differentiation. MOP could also upregulate SCARA3 expression through repressing miR-210-3p expression. Treatment with MOP increased the BMD and decreased the TRACP 5b and NTx levels in ovariectomized rats. MOP may boost the osteogenic differentiation and inhibit adipogenic differentiation of hBMSCs by miR-210-3p/SCARA3 axis.
科研通智能强力驱动
Strongly Powered by AbleSci AI