Application of generative AI-based data augmentation technique in transformer winding deformation fault diagnosis

变压器 稳健性(进化) 数据挖掘 模式识别(心理学) 机器学习 计算机科学 工程类 人工智能 电气工程 电压 生物化学 基因 化学
作者
Yu Chen,Zhongyong Zhao,Jiangnan Liu,Shan Tan,Changqing Liu
出处
期刊:Engineering Failure Analysis [Elsevier BV]
卷期号:159: 108115-108115 被引量:10
标识
DOI:10.1016/j.engfailanal.2024.108115
摘要

Accurately diagnosing various winding deformation faults is significant in power transformer maintenance. Among the different fault diagnosis methods, frequency response analysis (FRA) is widely used but still poses challenges. Artificial intelligence (AI)-based methods have recently been proposed to interpret FRA data. Nevertheless, these approaches are either complicated or exhibit limited generalization performance due to real-world FRA fault data scarcity. Inspired by AI-generated content (AIGC), this study proposes a data augmentation technique named conditional Wasserstein generative adversarial network with gradient penalty (Conditional-WGAN-GP) combined with fault diagnosis model. Numerous FRA-based data are automatically generated using the proposed data augmentation technique based on real FRA data obtained from a specially designed 10 kV transformer. The augmented dataset is then used to train fault diagnosis models to detect winding deformation faults. The trained fault diagnosis model is subsequently applied to assess two actual transformers. Experimental results demonstrate that when combined with the proposed method, even simpler fault diagnosis models can achieve high accuracy, exhibiting an improvement of approximately 5 % compared to the previous baseline model. The fault diagnosis models combined with the proposed data augmentation technique demonstrate improved generalization and robustness. (GitHub code: https://github.com/cy1034429432/Diagnosing-Transformer-Winding-Deformati on-Fault-Types-from-FRA-Based-on-Conditional-WGAN-GP-/tree/main).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
细腻问柳完成签到,获得积分10
刚刚
零点零壹应助slj采纳,获得10
刚刚
Doin完成签到 ,获得积分10
2秒前
微醺小王发布了新的文献求助10
2秒前
小透明发布了新的文献求助10
2秒前
3秒前
冰魂应助aa采纳,获得20
4秒前
4秒前
4秒前
JamesPei应助溶胶采纳,获得10
5秒前
陶世立完成签到 ,获得积分10
7秒前
粱踏歌发布了新的文献求助10
7秒前
8秒前
9秒前
甜甜从阳发布了新的文献求助10
10秒前
周同学完成签到 ,获得积分10
11秒前
小二郎应助安屿采纳,获得10
11秒前
12秒前
火星天发布了新的文献求助10
14秒前
郭宇发布了新的文献求助10
14秒前
华仔应助19558991211采纳,获得10
17秒前
cooper发布了新的文献求助10
18秒前
Leo完成签到,获得积分10
18秒前
科研通AI5应助郭宇采纳,获得10
19秒前
小W完成签到 ,获得积分10
20秒前
田様应助火星天采纳,获得10
20秒前
21秒前
22秒前
无望幽月完成签到 ,获得积分10
23秒前
田様应助ShiRz采纳,获得10
23秒前
Ava应助ShiRz采纳,获得10
23秒前
情怀应助ShiRz采纳,获得10
23秒前
安屿发布了新的文献求助10
26秒前
29秒前
29秒前
30秒前
SSS水鱼完成签到,获得积分10
31秒前
31秒前
HHEHK完成签到 ,获得积分10
33秒前
小樊同学发布了新的文献求助10
33秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776783
求助须知:如何正确求助?哪些是违规求助? 3322186
关于积分的说明 10209239
捐赠科研通 3037436
什么是DOI,文献DOI怎么找? 1666696
邀请新用户注册赠送积分活动 797627
科研通“疑难数据库(出版商)”最低求助积分说明 757959