Structure-based discovery of conformationally selective inhibitors of the serotonin transporter

生物 血清素转运体 药理学 运输机 立体化学 血清素 生物化学 化学 基因 受体
作者
Isha Singh,Anubha Seth,Christian B. Billesbølle,João M. Bráz,Ramona M. Rodriguiz,Kasturi Roy,Bethlehem Bekele,Veronica Craik,Xi‐Ping Huang,Danila Boytsov,Vladimir M. Pogorelov,Parnian Lak,Henry O’Donnell,Walter Sandtner,John J. Irwin,Bryan L. Roth,Allan I. Basbaum,William C. Wetsel,Aashish Manglik,Brian K. Shoichet
出处
期刊:Cell [Cell Press]
卷期号:186 (10): 2160-2175.e17 被引量:45
标识
DOI:10.1016/j.cell.2023.04.010
摘要

The serotonin transporter (SERT) removes synaptic serotonin and is the target of anti-depressant drugs. SERT adopts three conformations: outward-open, occluded, and inward-open. All known inhibitors target the outward-open state except ibogaine, which has unusual anti-depressant and substance-withdrawal effects, and stabilizes the inward-open conformation. Unfortunately, ibogaine's promiscuity and cardiotoxicity limit the understanding of inward-open state ligands. We docked over 200 million small molecules against the inward-open state of the SERT. Thirty-six top-ranking compounds were synthesized, and thirteen inhibited; further structure-based optimization led to the selection of two potent (low nanomolar) inhibitors. These stabilized an outward-closed state of the SERT with little activity against common off-targets. A cryo-EM structure of one of these bound to the SERT confirmed the predicted geometry. In mouse behavioral assays, both compounds had anxiolytic- and anti-depressant-like activity, with potencies up to 200-fold better than fluoxetine (Prozac), and one substantially reversed morphine withdrawal effects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8R60d8应助ALICE采纳,获得10
1秒前
1秒前
派大星完成签到,获得积分10
1秒前
xiongyh10完成签到,获得积分10
2秒前
丘比特应助时不我待C采纳,获得10
3秒前
打打应助漂亮访云采纳,获得10
3秒前
4秒前
yydragen应助Cindy采纳,获得50
4秒前
Robinli应助高挑的雨雪采纳,获得10
4秒前
5秒前
yar应助叶公子采纳,获得10
5秒前
笨笨发布了新的文献求助10
6秒前
7秒前
amberzyc应助TCMning采纳,获得10
8秒前
张女士发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
机灵盼芙发布了新的文献求助10
11秒前
nuomi发布了新的文献求助20
12秒前
深情安青应助心灵美明杰采纳,获得10
12秒前
小鱼完成签到 ,获得积分10
14秒前
Duke_ethan完成签到,获得积分10
14秒前
hejunhui发布了新的文献求助10
14秒前
16秒前
Umar发布了新的文献求助10
16秒前
17秒前
CC发布了新的文献求助10
17秒前
18秒前
19秒前
19秒前
草原牧牛郎完成签到,获得积分10
19秒前
天天快乐应助Lion采纳,获得10
19秒前
千互发布了新的文献求助10
21秒前
王伟军发布了新的文献求助30
22秒前
高挑的雨雪给高挑的雨雪的求助进行了留言
22秒前
22秒前
TTw发布了新的文献求助10
23秒前
海君发布了新的文献求助10
23秒前
23秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
求 5G-Advanced NTN空天地一体化技术 pdf版 500
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4066053
求助须知:如何正确求助?哪些是违规求助? 3604736
关于积分的说明 11448246
捐赠科研通 3327101
什么是DOI,文献DOI怎么找? 1829030
邀请新用户注册赠送积分活动 899118
科研通“疑难数据库(出版商)”最低求助积分说明 819449