AsthmaKGxE: An asthma–environment interaction knowledge graph leveraging public databases and scientific literature

哮喘 利用 计算机科学 构造(python库) 图形 数据科学 人工智能 机器学习 医学 理论计算机科学 计算机安全 内科学 程序设计语言
作者
Chaimae Asaad,Mounir Ghogho
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:148: 105933-105933 被引量:4
标识
DOI:10.1016/j.compbiomed.2022.105933
摘要

Asthma is a complex heterogeneous disease resulting from intricate interactions between genetic and non-genetic factors related to environmental and psychosocial aspects. Discovery of such interactions can provide insights into the pathophysiology and etiology of asthma. In this paper, we propose an asthma knowledge graph (KG) built using a hybrid methodology for graph-based modeling of asthma complexity with a focus on environmental interactions. Using a heterogeneous set of public sources, we construct a genetic and pharmacogenetic asthma knowledge graph. The construction of this KG allowed us to shed more light on the lack of curated resources focused on environmental influences related to asthma. To remedy the lack of environmental data in our KG, we exploit the biomedical literature using state-of-the-art natural language processing and construct the first Asthma-Environment interaction catalog incorporating a continuously updated ensemble of environmental, psychological, nutritional and socio-economic influences. The catalog's most substantiated results are then integrated into the KG.The resulting environmentally rich knowledge graph "AsthmaKGxE" aims to provide a resource for several potential applications of artificial intelligence and allows for a multi-perspective study of asthma. Our insight extraction results indicate that stress is the most frequent asthma association in the corpus, followed by allergens and obesity. We contend that studying asthma-environment interactions in more depth holds the key to curbing the complexity and heterogeneity of asthma.A user interface to browse and download the extracted catalog as well as the KG are available at http://asthmakgxe.moreair.info/. The code and supplementary data are available on github (https://github.com/ChaiAsaad/MoreAIRAsthmaKGxE).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
清水发布了新的文献求助10
2秒前
Ava应助有热心愿意采纳,获得10
2秒前
脑洞疼应助有热心愿意采纳,获得10
2秒前
小v的格洛米完成签到,获得积分10
6秒前
司徒文青应助信仰采纳,获得30
6秒前
打打应助zjw采纳,获得10
6秒前
7秒前
yga18发布了新的文献求助30
8秒前
11秒前
打打应助Yolo采纳,获得10
17秒前
17秒前
科研通AI2S应助火星上仰采纳,获得30
17秒前
高冷难神发布了新的文献求助10
23秒前
23秒前
24秒前
Raymond应助回忆杀采纳,获得10
24秒前
25秒前
25秒前
Yolo发布了新的文献求助10
28秒前
you秀的哈密瓜完成签到 ,获得积分10
28秒前
andy发布了新的文献求助10
29秒前
30秒前
Diana发布了新的文献求助10
30秒前
比大家发布了新的文献求助10
32秒前
大个应助傅宛白采纳,获得10
32秒前
HEIKU应助科研通管家采纳,获得10
35秒前
英俊的铭应助科研通管家采纳,获得20
35秒前
情怀应助科研通管家采纳,获得10
35秒前
科研通AI2S应助科研通管家采纳,获得10
35秒前
我是老大应助科研通管家采纳,获得10
35秒前
35秒前
科研通AI5应助科研通管家采纳,获得10
35秒前
zho应助科研通管家采纳,获得10
35秒前
zho应助科研通管家采纳,获得10
36秒前
Orange应助科研通管家采纳,获得10
36秒前
大个应助科研通管家采纳,获得10
36秒前
彭于晏应助科研通管家采纳,获得10
36秒前
HEIKU应助科研通管家采纳,获得10
36秒前
orixero应助科研通管家采纳,获得10
36秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778901
求助须知:如何正确求助?哪些是违规求助? 3324431
关于积分的说明 10218443
捐赠科研通 3039495
什么是DOI,文献DOI怎么找? 1668204
邀请新用户注册赠送积分活动 798591
科研通“疑难数据库(出版商)”最低求助积分说明 758440