Generalized Relevance Learning Grassmann Quantization

人工智能 计算机科学 相关性(法律) 量化(信号处理) 矢量量化 模式识别(心理学) 学习矢量量化 数学 自然语言处理 计算机视觉 政治学 法学
作者
Mohammad Mohammadi,M. Babai,Michael H. F. Wilkinson
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:: 1-12 被引量:3
标识
DOI:10.1109/tpami.2024.3466315
摘要

Due to advancements in digital cameras, it is easy to gather multiple images (or videos) from an object under different conditions. Therefore, image-set classification has attracted more attention, and different solutions were proposed to model them. A popular way to model image sets is subspaces, which form a manifold called the Grassmann manifold. In this contribution, we extend the application of Generalized Relevance Learning Vector Quantization to deal with Grassmann manifold. The proposed model returns a set of prototype subspaces and a relevance vector. While prototypes model typical behaviours within classes, the relevance factors specify the most discriminative principal vectors (or images) for the classification task. They both provide insights into the model's decisions by highlighting influential images and pixels for predictions. Moreover, due to learning prototypes, the model complexity of the new method during inference is independent of dataset size, unlike previous works. We applied it to several recognition tasks including handwritten digit recognition, face recognition, activity recognition, and object recognition. Experiments demonstrate that it outperforms previous works with lower complexity and can successfully model the variation, such as handwritten style or lighting conditions. Moreover, the presence of relevances makes the model robust to the selection of subspaces' dimensionality.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
忧虑的初晴完成签到,获得积分10
1秒前
秋小阳桑完成签到,获得积分10
1秒前
3秒前
时尚的冰棍儿完成签到 ,获得积分10
5秒前
池鱼完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
独行者完成签到,获得积分10
7秒前
8秒前
jieQYan发布了新的文献求助10
12秒前
SYLH应助大约在冬季采纳,获得20
12秒前
花开富贵完成签到,获得积分10
12秒前
guyutian完成签到,获得积分10
14秒前
ZSmile完成签到,获得积分10
17秒前
17秒前
量子星尘发布了新的文献求助10
17秒前
persi完成签到 ,获得积分10
18秒前
stay发布了新的文献求助10
21秒前
橙子驳回了打打应助
25秒前
ZZQ完成签到 ,获得积分20
27秒前
852应助如你所liao采纳,获得10
28秒前
希望天下0贩的0应助YY采纳,获得10
29秒前
yueyue完成签到,获得积分10
31秒前
李健应助失眠呆呆鱼采纳,获得10
31秒前
张流筝完成签到 ,获得积分10
32秒前
杀菌糕手完成签到 ,获得积分10
32秒前
32秒前
在水一方应助Ree采纳,获得30
32秒前
田様应助DLY采纳,获得10
36秒前
量子星尘发布了新的文献求助10
40秒前
42秒前
打打应助hank采纳,获得10
43秒前
47秒前
48秒前
49秒前
张瑜发布了新的文献求助10
50秒前
feng完成签到,获得积分10
50秒前
52秒前
昏睡的绿海完成签到,获得积分10
52秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3864992
求助须知:如何正确求助?哪些是违规求助? 3407371
关于积分的说明 10654021
捐赠科研通 3131454
什么是DOI,文献DOI怎么找? 1727026
邀请新用户注册赠送积分活动 832108
科研通“疑难数据库(出版商)”最低求助积分说明 780163