亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Dual-Branch Cross-Modality-Attention Network for Thyroid Nodule Diagnosis Based on Ultrasound Images and Contrast-Enhanced Ultrasound Videos

模态(人机交互) 超声波 放射科 超声造影 结核(地质) 对比度(视觉) 甲状腺 甲状腺结节 医学 计算机科学 人工智能 内科学 古生物学 生物
作者
Jianning Chi,Jiahui Chen,Bo Wu,Jin Zhao,K. Wang,Xiaosheng Yu,Wenjun Zhang,Ying Huang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:2
标识
DOI:10.1109/jbhi.2024.3472609
摘要

Contrast-enhanced ultrasound (CEUS) has been extensively employed as an imaging modality in thyroid nodule diagnosis due to its capacity to visualise the distribution and circulation of micro-vessels in organs and lesions in a non-invasive manner. However, current CEUS-based thyroid nodule diagnosis methods suffered from: 1) the blurred spatial boundaries between nodules and other anatomies in CEUS videos, and 2) the insufficient representations of the local structural information of nodule tissues by the features extracted only from CEUS videos. In this paper, we propose a novel dual-branch network with a cross-modality-attention mechanism for thyroid nodule diagnosis by integrating the information from tow related modalities, i.e., CEUS videos and ultrasound image. The mechanism has two parts: US-attention-from-CEUS transformer (UAC-T) and CEUS-attention-from-US transformer (CAU-T). As such, this network imitates the manner of human radiologists by decomposing the diagnosis into two correlated tasks: 1) the spatio-temporal features extracted from CEUS are hierarchically embedded into the spatial features extracted from US with UAC-T for the nodule segmentation; 2) the US spatial features are used to guide the extraction of the CEUS spatio-temporal features with CAU-T for the nodule classification. The two tasks are intertwined in the dual-branch end-to-end network and optimized with the multi-task learning (MTL) strategy. The proposed method is evaluated on our collected thyroid US-CEUS dataset. Experimental results show that our method achieves the classification accuracy of 86.92%, specificity of 66.41%, and sensitivity of 97.01%, outperforming the state-of-the-art methods. As a general contribution in the field of multi-modality diagnosis of diseases, the proposed method has provided an effective way to combine static information with its related dynamic information, improving the quality of deep learning based diagnosis with an additional benefit of explainability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文的苡完成签到,获得积分10
3秒前
4秒前
001完成签到,获得积分10
14秒前
滕皓轩完成签到 ,获得积分20
1分钟前
刘丰完成签到 ,获得积分10
1分钟前
YifanWang应助科研通管家采纳,获得10
2分钟前
YifanWang应助科研通管家采纳,获得10
2分钟前
SciGPT应助科研通管家采纳,获得10
2分钟前
3分钟前
研友_VZG7GZ应助鲜艳的诗翠采纳,获得10
3分钟前
友好的白柏完成签到 ,获得积分10
3分钟前
李健的小迷弟应助Sandy采纳,获得10
3分钟前
人谷完成签到 ,获得积分10
3分钟前
人谷呀完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
4分钟前
华仔应助羽生结弦的馨馨采纳,获得10
4分钟前
5分钟前
5分钟前
5分钟前
qqq完成签到,获得积分10
5分钟前
6分钟前
6分钟前
6分钟前
6分钟前
6分钟前
6分钟前
早睡一哥完成签到,获得积分10
7分钟前
002完成签到,获得积分10
7分钟前
包容的剑完成签到 ,获得积分10
7分钟前
7分钟前
003完成签到,获得积分10
7分钟前
淡淡醉波wuliao完成签到 ,获得积分10
7分钟前
7分钟前
Sandy发布了新的文献求助10
7分钟前
7分钟前
7分钟前
Sandy完成签到,获得积分10
7分钟前
传奇3应助天空之城采纳,获得10
7分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777624
求助须知:如何正确求助?哪些是违规求助? 3322988
关于积分的说明 10212874
捐赠科研通 3038350
什么是DOI,文献DOI怎么找? 1667372
邀请新用户注册赠送积分活动 798106
科研通“疑难数据库(出版商)”最低求助积分说明 758229