An adaptive autoregressive diffusion approach to design active humanized antibody and nanobody

自回归模型 扩散 计算机科学 数学 物理 计量经济学 热力学
作者
Jian Ma,Fandi Wu,Tingyang Xu,Shiming Xu,Wei Liu,Divin Yan,Qifeng Bai,Jianhua Yao
标识
DOI:10.1101/2024.10.22.619416
摘要

Humanization is a critical process for designing efficiently specific antibodies and nanobodies prior to clinical trials. Developing widely recognized deep learning techniques or frameworks for humanizing conventional antibodies and nanobodies presents a valuable yet challenging task. Inspired by the effectiveness of diffusion models across various applications, we introduce HuDiff, an adaptive diffusion approach for humanizing antibodies and nanobodies from scratch, referred to as HuDiff-Ab and HuDiff-Nb, respectively. This approach begins the humanization process exclusively with complementarity-determining region (CDR) sequences, eliminating the need for humanized templates. On public benchmark datasets, the results of HuDiff-Ab’s humanized antibodies are more similar to experimentally humanized antibodies than to those of the Sapiens humanization model. Besides, humanized nanobodies produced by HuDiff-Nb exhibit a higher humanness score and greater nativeness than those generated by the Lammanade pipeline for humanization nanobody. We apply HuDiff to humanize a mouse antibody and an alpaca nanobody, both targeting the SARS-CoV-2 RBD, and validate the binding affinity of humanized sequences through Bio-Layer Interferometry (BLI) experiments. The results show the binding affinity of the best humanized antibody is nearly equal to that of the parental mouse antibody (0.15 nM vs. 0.12 nM). Remarkably, the top-performing humanized nanobody exhibits a significantly enhanced binding affinity compared to the parental alpaca nanobody (2.52 nM vs. 5.47 nM), representing a 54% increase. These findings indicate that our approach HuDiff is highly effective in enhancing the humanness of antibodies and nanobodies while maintaining or potentially improving the binding affinity of the designed humanized sequences. The code and checkpoints of HuDiff are available at https://github.com/TencentAI4S/HuDiff .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
k_1发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
1秒前
小新麻麻发布了新的文献求助10
1秒前
liujinzhi应助hong采纳,获得10
1秒前
1秒前
Lee完成签到,获得积分10
1秒前
1秒前
脑洞疼应助依风采纳,获得10
2秒前
觅松完成签到,获得积分10
2秒前
木子木子李完成签到,获得积分10
2秒前
暮云斜完成签到,获得积分10
2秒前
3秒前
SciGPT应助小月月yyy采纳,获得10
3秒前
Cristina2024完成签到,获得积分10
3秒前
WY发布了新的文献求助10
3秒前
小蘑菇应助k_1采纳,获得10
3秒前
lt04完成签到,获得积分10
4秒前
shin0324发布了新的文献求助10
5秒前
zhousy发布了新的文献求助10
6秒前
韵掀完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
9秒前
果粒橙给现代绮玉的求助进行了留言
9秒前
林好人发布了新的文献求助10
9秒前
拼搏的鹰完成签到,获得积分20
10秒前
万能图书馆应助笨笨善若采纳,获得10
10秒前
10秒前
10秒前
不爱看文献头疼应助fang采纳,获得10
10秒前
SciGPT应助海绵采纳,获得10
11秒前
完美世界应助绿绿采纳,获得10
11秒前
fei完成签到,获得积分10
11秒前
11秒前
wenjian发布了新的文献求助10
12秒前
12秒前
彭于晏应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
The Synthesis of Simplified Analogues of Crambescin B Carboxylic Acid and Their Inhibitory Activity of Voltage-Gated Sodium Channels: New Aspects of Structure–Activity Relationships 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5597864
求助须知:如何正确求助?哪些是违规求助? 4683398
关于积分的说明 14829432
捐赠科研通 4661776
什么是DOI,文献DOI怎么找? 2536884
邀请新用户注册赠送积分活动 1504494
关于科研通互助平台的介绍 1470237