An adaptive autoregressive diffusion approach to design active humanized antibody and nanobody

自回归模型 扩散 计算机科学 数学 物理 计量经济学 热力学
作者
Jian Ma,Fandi Wu,Tingyang Xu,Shiming Xu,Wei Liu,Divin Yan,Qifeng Bai,Jianhua Yao
标识
DOI:10.1101/2024.10.22.619416
摘要

Humanization is a critical process for designing efficiently specific antibodies and nanobodies prior to clinical trials. Developing widely recognized deep learning techniques or frameworks for humanizing conventional antibodies and nanobodies presents a valuable yet challenging task. Inspired by the effectiveness of diffusion models across various applications, we introduce HuDiff, an adaptive diffusion approach for humanizing antibodies and nanobodies from scratch, referred to as HuDiff-Ab and HuDiff-Nb, respectively. This approach begins the humanization process exclusively with complementarity-determining region (CDR) sequences, eliminating the need for humanized templates. On public benchmark datasets, the results of HuDiff-Ab’s humanized antibodies are more similar to experimentally humanized antibodies than to those of the Sapiens humanization model. Besides, humanized nanobodies produced by HuDiff-Nb exhibit a higher humanness score and greater nativeness than those generated by the Lammanade pipeline for humanization nanobody. We apply HuDiff to humanize a mouse antibody and an alpaca nanobody, both targeting the SARS-CoV-2 RBD, and validate the binding affinity of humanized sequences through Bio-Layer Interferometry (BLI) experiments. The results show the binding affinity of the best humanized antibody is nearly equal to that of the parental mouse antibody (0.15 nM vs. 0.12 nM). Remarkably, the top-performing humanized nanobody exhibits a significantly enhanced binding affinity compared to the parental alpaca nanobody (2.52 nM vs. 5.47 nM), representing a 54% increase. These findings indicate that our approach HuDiff is highly effective in enhancing the humanness of antibodies and nanobodies while maintaining or potentially improving the binding affinity of the designed humanized sequences. The code and checkpoints of HuDiff are available at https://github.com/TencentAI4S/HuDiff .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
JamesPei应助li采纳,获得10
6秒前
11秒前
12秒前
13秒前
16秒前
yaoqi完成签到,获得积分10
16秒前
caoruotong发布了新的文献求助10
16秒前
18秒前
19秒前
吴楚发布了新的文献求助10
25秒前
zjj完成签到 ,获得积分10
25秒前
七月完成签到,获得积分10
27秒前
xlx应助科研通管家采纳,获得10
28秒前
28秒前
28秒前
29秒前
31秒前
无花果应助火星上的如松采纳,获得10
32秒前
Alone发布了新的文献求助10
33秒前
li发布了新的文献求助10
36秒前
英姑应助肝胆外科医生采纳,获得20
36秒前
38秒前
研友_VZG7GZ应助haoran采纳,获得10
38秒前
39秒前
星辰大海应助压缩采纳,获得10
40秒前
Alone完成签到,获得积分20
41秒前
42秒前
Somebody发布了新的文献求助20
44秒前
45秒前
内向映天完成签到 ,获得积分10
45秒前
所所应助jessicazhong采纳,获得10
47秒前
49秒前
科研小灵通完成签到,获得积分10
49秒前
GingerF应助li采纳,获得150
51秒前
52秒前
dao发布了新的文献求助10
52秒前
完美的凝蝶完成签到 ,获得积分10
53秒前
阿智完成签到,获得积分10
53秒前
压缩发布了新的文献求助10
56秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
Development in Infancy 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4783962
求助须知:如何正确求助?哪些是违规求助? 4111595
关于积分的说明 12720212
捐赠科研通 3836163
什么是DOI,文献DOI怎么找? 2115272
邀请新用户注册赠送积分活动 1138321
关于科研通互助平台的介绍 1024124