Evaluating the Efficacy of Large Language Models in CPT Coding for Craniofacial Surgery: A Comparative Analysis

编码(社会科学) 正确性 医学 现行程序术语 计算机科学 自然语言处理 机器学习 人工智能 外科 算法 统计 数学
作者
Emily Isch,Advith Sarikonda,Abhijeet Sambangi,Angeleah Carreras,Adrija Sircar,D Mitchell Self,Theodore E. Habarth-Morales,EJ Caterson,Mario A. Aycart
出处
期刊:Journal of Craniofacial Surgery [Lippincott Williams & Wilkins]
被引量:3
标识
DOI:10.1097/scs.0000000000010575
摘要

Background: The advent of Large Language Models (LLMs) like ChatGPT has introduced significant advancements in various surgical disciplines. These developments have led to an increased interest in the utilization of LLMs for Current Procedural Terminology (CPT) coding in surgery. With CPT coding being a complex and time-consuming process, often exacerbated by the scarcity of professional coders, there is a pressing need for innovative solutions to enhance coding efficiency and accuracy. Methods: This observational study evaluated the effectiveness of 5 publicly available large language models—Perplexity.AI, Bard, BingAI, ChatGPT 3.5, and ChatGPT 4.0—in accurately identifying CPT codes for craniofacial procedures. A consistent query format was employed to test each model, ensuring the inclusion of detailed procedure components where necessary. The responses were classified as correct, partially correct, or incorrect based on their alignment with established CPT coding for the specified procedures. Results: The results indicate that while there is no overall significant association between the type of AI model and the correctness of CPT code identification, there are notable differences in performance for simple and complex CPT codes among the models. Specifically, ChatGPT 4.0 showed higher accuracy for complex codes, whereas Perplexity.AI and Bard were more consistent with simple codes. Discussion: The use of AI chatbots for CPT coding in craniofacial surgery presents a promising avenue for reducing the administrative burden and associated costs of manual coding. Despite the lower accuracy rates compared with specialized, trained algorithms, the accessibility and minimal training requirements of the AI chatbots make them attractive alternatives. The study also suggests that priming AI models with operative notes may enhance their accuracy, offering a resource-efficient strategy for improving CPT coding in clinical practice. Conclusions: This study highlights the feasibility and potential benefits of integrating LLMs into the CPT coding process for craniofacial surgery. The findings advocate for further refinement and training of AI models to improve their accuracy and practicality, suggesting a future where AI-assisted coding could become a standard component of surgical workflows, aligning with the ongoing digital transformation in health care.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
糊涂的宛完成签到,获得积分20
2秒前
Simple发布了新的文献求助50
2秒前
RLL完成签到,获得积分10
3秒前
博修发布了新的文献求助10
3秒前
TARGET完成签到 ,获得积分10
3秒前
合适的青荷完成签到,获得积分10
4秒前
WaitP应助小小莫采纳,获得10
4秒前
5秒前
鹏826完成签到 ,获得积分10
6秒前
咕咕咕发布了新的文献求助10
8秒前
suzhen完成签到,获得积分10
11秒前
小学生发布了新的文献求助10
11秒前
高兴大白菜真实的钥匙完成签到 ,获得积分10
12秒前
起起完成签到,获得积分10
12秒前
LabRat完成签到 ,获得积分10
13秒前
14秒前
要减肥笑阳完成签到 ,获得积分10
15秒前
Jasper应助单纯的乌冬面采纳,获得10
17秒前
xiaoyu完成签到,获得积分10
17秒前
xiaoyue发布了新的文献求助10
17秒前
20秒前
feng发布了新的文献求助20
21秒前
dream177777完成签到 ,获得积分10
21秒前
wanci应助冷静的帽子采纳,获得10
21秒前
小学生完成签到,获得积分10
22秒前
23秒前
欣慰小蕊完成签到,获得积分10
23秒前
洁净奄完成签到,获得积分10
25秒前
26秒前
o_0发布了新的文献求助10
26秒前
28秒前
研友_LMg3PZ发布了新的文献求助10
29秒前
发财总完成签到,获得积分20
29秒前
郑旭辉发布了新的文献求助20
29秒前
33秒前
34秒前
mochen0722完成签到,获得积分10
35秒前
iAlvinz完成签到,获得积分10
37秒前
sun0115完成签到 ,获得积分10
37秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799266
求助须知:如何正确求助?哪些是违规求助? 3344889
关于积分的说明 10322458
捐赠科研通 3061369
什么是DOI,文献DOI怎么找? 1680310
邀请新用户注册赠送积分活动 806960
科研通“疑难数据库(出版商)”最低求助积分说明 763451