已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Simulation-based multi-objective optimization towards proactive evacuation planning at metro stations

计算机科学 紧急疏散 过程(计算) 事件(粒子物理) 管理策略 模拟 运筹学 量子力学 海洋学 操作系统 物理 地质学 工程类 业务 工商管理
作者
Kai Guo,Limao Zhang,Maozhi Wu
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:120: 105858-105858 被引量:10
标识
DOI:10.1016/j.engappai.2023.105858
摘要

Effective evacuation management is crucial in response to an emergency at metro stations. Due to the unpredictability and high complexity at metro stations, great challenges exist for evacuation management. A hybrid approach with the integration of building information modeling (BIM), simulation tool (Anylogic), and machine learning algorithms is proposed in this research to realize the evacuation event simulation and proactive evacuation management. A case study is performed to test the applicability and effectiveness of the proposed approach. It is found in the case study that: (1) The constructed simulation model could successfully perform the prediction of the evacuation process for the target metro station, and numbers of congestion areas can be identified (i.e., 7, 7, 9, 11 congestion areas for the four typical scenarios, respectively); (2) A proactive evacuation guiding strategy is proposed from the hybrid approach, which could realize a much better improvement for the evacuation events (at least 15.3% and 39.3% could be achieved for objectives of the evacuation time and the evacuation over-density rate, respectively), compared to the conventional guiding strategies; (3) The proposed proactive guiding strategy is the only one, in all three guiding strategies, that could shorten the evacuation time to the maximum extent and remove the congestion areas entirely. The novelty of the proposed approach lies in that: (i) The proposed hybrid approach could be able to accurately predict the evacuation conditions under different scenarios by incorporating the LightGBM algorithm; (ii) A proactive guiding strategy, along with the proposal of the innovative over-density rate rule, is provided with the ability of significantly improving the evacuation efficiency. This proposed approach not only presents an efficient tool for the evaluation of evacuations, but also greatly enriches the field of proactive evacuation management at metro stations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Simpson完成签到 ,获得积分10
1秒前
努力的咩咩完成签到 ,获得积分10
1秒前
核桃完成签到,获得积分10
2秒前
634301059完成签到 ,获得积分10
2秒前
2秒前
8564523完成签到,获得积分10
2秒前
decade完成签到 ,获得积分10
3秒前
Nnnnnkw完成签到 ,获得积分10
5秒前
5秒前
5秒前
rudjs完成签到,获得积分10
6秒前
6秒前
7秒前
泥泞完成签到 ,获得积分10
8秒前
张振宇完成签到 ,获得积分10
8秒前
杨行肖发布了新的文献求助10
8秒前
Nick完成签到 ,获得积分10
9秒前
感性的俊驰完成签到 ,获得积分10
10秒前
123完成签到 ,获得积分10
10秒前
侯栋发布了新的文献求助10
10秒前
liufan完成签到 ,获得积分10
11秒前
11秒前
儒雅HR发布了新的文献求助10
11秒前
monster完成签到 ,获得积分10
11秒前
12秒前
奥特曼完成签到,获得积分10
13秒前
yema完成签到 ,获得积分10
14秒前
光亮的冰薇完成签到 ,获得积分10
15秒前
所所应助炬火采纳,获得10
15秒前
想人陪的飞薇完成签到 ,获得积分10
15秒前
奥特曼发布了新的文献求助10
16秒前
Doctor_Mill完成签到,获得积分10
17秒前
qiang344完成签到 ,获得积分10
18秒前
儒雅HR完成签到,获得积分10
18秒前
欢迎scid完成签到,获得积分10
19秒前
LUBBY发布了新的文献求助10
19秒前
zhang完成签到,获得积分20
21秒前
碧蓝雁风完成签到 ,获得积分10
22秒前
行走人生完成签到,获得积分10
24秒前
plant完成签到 ,获得积分10
24秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
壮语核心名词的语言地图及解释 900
Digital predistortion of memory polynomial systems using direct and indirect learning architectures 500
Canon of Insolation and the Ice-age Problem 380
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 光电子学 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3916482
求助须知:如何正确求助?哪些是违规求助? 3461982
关于积分的说明 10919949
捐赠科研通 3188789
什么是DOI,文献DOI怎么找? 1762865
邀请新用户注册赠送积分活动 853191
科研通“疑难数据库(出版商)”最低求助积分说明 793716