Simulation-based multi-objective optimization towards proactive evacuation planning at metro stations

计算机科学 紧急疏散 过程(计算) 事件(粒子物理) 管理策略 模拟 运筹学 量子力学 海洋学 操作系统 物理 地质学 工程类 业务 工商管理
作者
Kai Guo,Limao Zhang,Maozhi Wu
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:120: 105858-105858 被引量:10
标识
DOI:10.1016/j.engappai.2023.105858
摘要

Effective evacuation management is crucial in response to an emergency at metro stations. Due to the unpredictability and high complexity at metro stations, great challenges exist for evacuation management. A hybrid approach with the integration of building information modeling (BIM), simulation tool (Anylogic), and machine learning algorithms is proposed in this research to realize the evacuation event simulation and proactive evacuation management. A case study is performed to test the applicability and effectiveness of the proposed approach. It is found in the case study that: (1) The constructed simulation model could successfully perform the prediction of the evacuation process for the target metro station, and numbers of congestion areas can be identified (i.e., 7, 7, 9, 11 congestion areas for the four typical scenarios, respectively); (2) A proactive evacuation guiding strategy is proposed from the hybrid approach, which could realize a much better improvement for the evacuation events (at least 15.3% and 39.3% could be achieved for objectives of the evacuation time and the evacuation over-density rate, respectively), compared to the conventional guiding strategies; (3) The proposed proactive guiding strategy is the only one, in all three guiding strategies, that could shorten the evacuation time to the maximum extent and remove the congestion areas entirely. The novelty of the proposed approach lies in that: (i) The proposed hybrid approach could be able to accurately predict the evacuation conditions under different scenarios by incorporating the LightGBM algorithm; (ii) A proactive guiding strategy, along with the proposal of the innovative over-density rate rule, is provided with the ability of significantly improving the evacuation efficiency. This proposed approach not only presents an efficient tool for the evaluation of evacuations, but also greatly enriches the field of proactive evacuation management at metro stations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈陈陈完成签到,获得积分10
1秒前
RRRZZ完成签到 ,获得积分10
2秒前
陈陈陈发布了新的文献求助10
3秒前
5秒前
卡卡完成签到,获得积分10
8秒前
自由的迎南完成签到,获得积分10
10秒前
小羊佳佳完成签到,获得积分10
10秒前
12秒前
lily完成签到 ,获得积分10
15秒前
15秒前
彭三忘完成签到,获得积分20
17秒前
sougardenist完成签到 ,获得积分10
19秒前
清水小镇发布了新的文献求助10
22秒前
27秒前
27秒前
qy发布了新的文献求助10
30秒前
31秒前
s1ght发布了新的文献求助10
32秒前
海城好人完成签到,获得积分10
32秒前
JamesPei应助安静的忆山采纳,获得10
32秒前
Enoelle发布了新的文献求助10
34秒前
爱听歌的孤容完成签到 ,获得积分10
38秒前
万程完成签到,获得积分20
39秒前
穆奕完成签到 ,获得积分10
40秒前
槿裡完成签到 ,获得积分10
41秒前
科研通AI2S应助然然采纳,获得10
42秒前
Enoelle完成签到,获得积分20
44秒前
汉堡包应助s1ght采纳,获得10
45秒前
空白的卡卡完成签到,获得积分10
47秒前
杨师傅完成签到 ,获得积分10
48秒前
平常安雁完成签到 ,获得积分10
50秒前
脑洞疼应助Chara_kara采纳,获得10
52秒前
李健的粉丝团团长应助qy采纳,获得10
56秒前
1分钟前
1分钟前
务实鞅完成签到 ,获得积分10
1分钟前
yang完成签到 ,获得积分10
1分钟前
李爱国应助长理物电强采纳,获得10
1分钟前
1分钟前
Chara_kara发布了新的文献求助10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779649
求助须知:如何正确求助?哪些是违规求助? 3325127
关于积分的说明 10221379
捐赠科研通 3040230
什么是DOI,文献DOI怎么找? 1668691
邀请新用户注册赠送积分活动 798766
科研通“疑难数据库(出版商)”最低求助积分说明 758535