热重分析
碳纳米管
材料科学
硅酸盐水泥
复合数
水泥
复合材料
成核
扫描电子显微镜
化学工程
等温过程
超声
水合硅酸钙
高分辨率透射电子显微镜
透射电子显微镜
纳米技术
化学
有机化学
物理
工程类
热力学
作者
Jonathan M. Makar,Gordon Chan
标识
DOI:10.1111/j.1551-2916.2009.03055.x
摘要
Single‐walled carbon nanotubes (SWCNT) were distributed on the surface of ordinary Portland cement (OPC) grains. The OPC/SWCNT composite was then hydrated at a 0.5 w/c ratio. The effects of the SWCNT on the early hydration process were studied using isothermal conduction calorimetry, high‐resolution scanning electron microscopy and thermogravimetric analysis. The observed behavior of the composite samples was compared with both OPC sonicated without SWCNT and previously published data on as‐delivered OPC. The SWCNT were found to accelerate the hydration reaction of the C 3 S in the OPC. The morphology of both the initial C 3 A and the C 3 S hydration products were found to be affected by the presence of the SWCNT. In particular, the nanotubes appeared to act as nucleating sites for the C 3 S hydration products, with the nanotubes becoming rapidly coated with C–S–H. The resulting structures remained on the surface of the cement grains while those in the sonicated and as‐delivered OPC samples grew out from the grain surfaces to form typical C–S–H clusters. Classical evidence of reinforcing behavior, in the form of fiber pullout of the SWCNT bundles, was observed by 24 h of hydration.
科研通智能强力驱动
Strongly Powered by AbleSci AI