Carbon Nanotube Synthesis and Growth Mechanism

机制(生物学) 碳纳米管 纳米技术 材料科学 物理 量子力学
作者
Mukul Kumar
出处
期刊:InTech eBooks [InTech]
被引量:99
标识
DOI:10.5772/19331
摘要

A carbon nanotube (CNT) is a tubular structure made of carbon atoms, having diameter of nanometer order but length in micrometers. Right from its discovery, we have been listening exciting quotations about CNT, viz. “CNT is 100 times stronger than stainless steel and six times lighter...” “CNT is as hard as diamond and its thermal capacity is twice that of pure diamond...” “CNT’s current-carrying capacity is 1000 times higher than that of copper...” “CNT is thermally stable up to 4000K...” “CNT can be metallic or semiconducting, depending on their diameter and chirality...” However, it is important to note that all those superlative properties were predicted for an atomically-perfect ideal CNT which is far from the CNTs we are practically producing today. Despite a huge progress in CNT research over the years, we are still unable to produce CNTs of well-defined properties in large quantities by a cost-effective technique. The root of this problem is the lack of proper understanding of the CNT growth mechanism. There are several questions at the growth level awaiting concrete answer. Till date no CNT growth model could be robustly established. Hence this chapter is devoted to review the present state of CNT synthesis and growth mechanism. There are three commonly-used methods of CNT synthesis. Arc-discharge method, in which the first CNT was discovered, employs evaporation of graphite electrodes in electric arcs that involve very high (~4000°C) temperatures (Iijima, 1991). Although arc-grown CNTs are well crystallized, they are highly impure; about 60–70% of the arc-grown product contains metal particles and amorphous carbon. Laser-vaporization technique employs evaporation of high-purity graphite target by high-power lasers in conjunction with high-temperature furnaces (Thess et al., 1996). Although laser-grown CNTs are of high purity, their production yield is very low (in milli gram order). Thus, it is obvious that these two methods score too low on account of efficient use of energy and resources. Chemical vapor deposition (CVD), incorporating catalyst-assisted thermal decomposition of hydrocarbons, is the most popular method of producing CNTs; and it is truly a low-cost and scalable technique for mass production of CNTs (Cassell et al., 1999). That is why CVD is the most popular method of producing CNTs nowadays. Here we will review the materials aspects of CNT synthesis by CVD and discuss the CNT growth mechanism in the light of latest progresses in the field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蓝桉完成签到 ,获得积分10
5秒前
汉堡包应助keyan采纳,获得10
5秒前
热心的飞风完成签到 ,获得积分10
7秒前
16秒前
20秒前
keyan发布了新的文献求助10
22秒前
fei完成签到 ,获得积分10
22秒前
zhhl2006完成签到,获得积分10
30秒前
晚街听风完成签到 ,获得积分10
32秒前
34秒前
Sindy完成签到,获得积分10
34秒前
36秒前
健壮惋清完成签到 ,获得积分10
36秒前
明理如凡发布了新的文献求助10
40秒前
c1302128340完成签到,获得积分10
41秒前
Jasper应助fjhsg25采纳,获得10
49秒前
兰是一个信仰完成签到,获得积分10
52秒前
张晓东完成签到,获得积分10
52秒前
虞无声完成签到,获得积分10
53秒前
yyy完成签到 ,获得积分10
58秒前
Yynnn完成签到 ,获得积分10
58秒前
华仔应助科研通管家采纳,获得10
59秒前
sunshine应助科研通管家采纳,获得10
59秒前
隐形曼青应助科研通管家采纳,获得10
59秒前
59秒前
Orange应助科研通管家采纳,获得10
59秒前
英姑应助科研通管家采纳,获得10
59秒前
漂亮的秋天完成签到 ,获得积分10
1分钟前
young完成签到 ,获得积分10
1分钟前
至若春和景明完成签到,获得积分10
1分钟前
1分钟前
CHANG完成签到 ,获得积分10
1分钟前
ZZQ完成签到 ,获得积分10
1分钟前
1分钟前
Jenifer完成签到 ,获得积分10
1分钟前
ZX612完成签到,获得积分10
1分钟前
1分钟前
HuLL完成签到 ,获得积分10
1分钟前
Asumita完成签到,获得积分10
1分钟前
贾舒涵完成签到,获得积分10
1分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Impact of water dispenser establishment on drinking water availability and health status of peri-urban community 560
Implantable Technologies 500
Theories of Human Development 400
Canon of Insolation and the Ice-age Problem 380
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 光电子学 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3920088
求助须知:如何正确求助?哪些是违规求助? 3465029
关于积分的说明 10935609
捐赠科研通 3193347
什么是DOI,文献DOI怎么找? 1764593
邀请新用户注册赠送积分活动 854997
科研通“疑难数据库(出版商)”最低求助积分说明 794570