Distinct biological subtypes and patterns of genome evolution in lymphoma revealed by circulating tumor DNA

DNA 淋巴瘤 生物 循环肿瘤DNA 计算生物学 基因组 遗传学 癌症研究 癌症 基因 医学 免疫学
作者
Florian Scherer,David M. Kurtz,Aaron M. Newman,Henning Stehr,Alexander Craig,Mohammad Shahrokh Esfahani,Alexander F. Lovejoy,Jacob J. Chabon,Daniel M. Klass,Chih Long Liu,Li Zhou,Cynthia Glover,Brendan C. Visser,George A. Poultsides,Ranjana H. Advani,Lauren S. Maeda,Neel K. Gupta,Ronald Levy,Robert S. Ohgami,Christian A. Kunder
出处
期刊:Science Translational Medicine [American Association for the Advancement of Science]
卷期号:8 (364) 被引量:413
标识
DOI:10.1126/scitranslmed.aai8545
摘要

Patients with diffuse large B cell lymphoma (DLBCL) exhibit marked diversity in tumor behavior and outcomes, yet the identification of poor-risk groups remains challenging. In addition, the biology underlying these differences is incompletely understood. We hypothesized that characterization of mutational heterogeneity and genomic evolution using circulating tumor DNA (ctDNA) profiling could reveal molecular determinants of adverse outcomes. To address this hypothesis, we applied cancer personalized profiling by deep sequencing (CAPP-Seq) analysis to tumor biopsies and cell-free DNA samples from 92 lymphoma patients and 24 healthy subjects. At diagnosis, the amount of ctDNA was found to strongly correlate with clinical indices and was independently predictive of patient outcomes. We demonstrate that ctDNA genotyping can classify transcriptionally defined tumor subtypes, including DLBCL cell of origin, directly from plasma. By simultaneously tracking multiple somatic mutations in ctDNA, our approach outperformed immunoglobulin sequencing and radiographic imaging for the detection of minimal residual disease and facilitated noninvasive identification of emergent resistance mutations to targeted therapies. In addition, we identified distinct patterns of clonal evolution distinguishing indolent follicular lymphomas from those that transformed into DLBCL, allowing for potential noninvasive prediction of histological transformation. Collectively, our results demonstrate that ctDNA analysis reveals biological factors that underlie lymphoma clinical outcomes and could facilitate individualized therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LW完成签到,获得积分10
2秒前
Ava应助LHYoung采纳,获得30
2秒前
wahaha完成签到 ,获得积分10
3秒前
3秒前
hanxiao完成签到,获得积分10
5秒前
冲刺的仙人掌完成签到,获得积分10
6秒前
田様应助ywhys采纳,获得10
7秒前
Yzz完成签到,获得积分10
8秒前
10秒前
11秒前
火星仙人掌发布了新的文献求助150
13秒前
13秒前
谦让小丸子完成签到,获得积分10
15秒前
16秒前
tango完成签到,获得积分10
16秒前
17秒前
ZZQ发布了新的文献求助10
18秒前
打打应助fatcat采纳,获得30
19秒前
RHJ完成签到 ,获得积分10
19秒前
星辰大海应助Return采纳,获得10
20秒前
Adeline完成签到,获得积分10
21秒前
tango发布了新的文献求助10
22秒前
ywhys发布了新的文献求助10
22秒前
记得接电话完成签到,获得积分10
23秒前
FashionBoy应助qiulong采纳,获得10
24秒前
24秒前
科研通AI2S应助Allough采纳,获得10
25秒前
zzx完成签到,获得积分10
25秒前
hygge完成签到,获得积分10
25秒前
月亮快打烊吖完成签到 ,获得积分10
25秒前
开心的秋寒完成签到,获得积分10
26秒前
27秒前
务实天德完成签到,获得积分10
28秒前
28秒前
冷艳的孤晴完成签到,获得积分10
30秒前
30秒前
Cpp完成签到,获得积分10
30秒前
白天亮完成签到,获得积分10
32秒前
34秒前
张欣童666发布了新的文献求助10
35秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799241
求助须知:如何正确求助?哪些是违规求助? 3344889
关于积分的说明 10322351
捐赠科研通 3061369
什么是DOI,文献DOI怎么找? 1680250
邀请新用户注册赠送积分活动 806960
科研通“疑难数据库(出版商)”最低求助积分说明 763451