Machine-Learning for Mineral Identification and Ore Estimation From Hyperspectral Imagery in Tin-Tungsten Deposits

锡石 高光谱成像 黑钨矿 人工智能 矿物学 地质学 尾矿 采矿工程 计算机科学 材料科学 冶金
作者
Agustín Lobo,Edel B. García,Gisela Barroso,David Martí,J. L. Fernández-Turiel,J. Ibáñez
标识
DOI:10.20944/preprints202106.0220.v1
摘要

This study aims to assess the feasibility of delineating and identifying mineral ores from hyperspectral images of tin-tungsten mine excavation faces using machine-learning classification. We compiled a set of hand samples of minerals of interest from a tin-tungsten mine and analyzed two types of hyperspectral images: 1) images acquired with a laboratory set-up under close-to-optimal conditions; and 2) scan of a simulated mine face using a field set-up, under conditions closer to those in the gallery. We have analyzed the following minerals: cassiterite (tin ore), wolframite (tungsten ore), chalcopyrite, malachite, muscovite, and quartz. Classification (Linear Discriminant Analysis, Singular Vector Machines and Random Forest) of laboratory spectra had a very high overall accuracy rate (98%), slightly lower if the 450 – 950 nm and 950 – 1780 nm ranges are considered independently, and much lower (74.5%) for simulated conventional RGB imagery. Classification accuracy for the simulation was lower than in the laboratory but still high (85%), likely a consequence of the lower spatial resolution. All three classification methods performed similarly in this case, with Random Forest producing results of slightly higher accuracy. The user’s accuracy for wolframite was 85%, but cassiterite was often confused with wolframite (user’s accuracy: 70%). A lumped ore category achieved 94.9% user’s accuracy. Our study confirms the suitability of hyperspectral imaging to record the spatial distribution of ore mineralization in progressing tungsten-tin mine faces.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
筱宸完成签到,获得积分10
刚刚
粿粿一定行完成签到 ,获得积分10
1秒前
1秒前
jenningseastera应助HX采纳,获得10
1秒前
2秒前
bc应助hyhyhyhy采纳,获得30
2秒前
123完成签到,获得积分20
2秒前
2秒前
2秒前
开心的眼睛完成签到,获得积分10
3秒前
榴莲完成签到,获得积分10
3秒前
天天快乐应助IanYoung71采纳,获得10
3秒前
4秒前
123发布了新的文献求助10
5秒前
烂漫半梅发布了新的文献求助10
5秒前
动人的白凡完成签到 ,获得积分10
5秒前
小贺完成签到,获得积分10
6秒前
doomedQL完成签到,获得积分10
6秒前
快快跑咯发布了新的文献求助10
7秒前
汉堡包应助Jerrry采纳,获得10
7秒前
8秒前
8秒前
wang完成签到,获得积分10
8秒前
8秒前
8秒前
灵巧天玉完成签到,获得积分10
9秒前
10秒前
netrandwalk完成签到,获得积分10
10秒前
10秒前
sgl完成签到 ,获得积分10
10秒前
caresse完成签到,获得积分20
11秒前
欢呼的渊思完成签到,获得积分10
11秒前
12秒前
13秒前
ada发布了新的文献求助10
13秒前
彭于晏应助耍酷的翠曼采纳,获得30
13秒前
调皮的妙竹完成签到,获得积分10
15秒前
ning发布了新的文献求助10
15秒前
Eon完成签到 ,获得积分10
16秒前
YY发布了新的文献求助30
16秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805407
求助须知:如何正确求助?哪些是违规求助? 3350368
关于积分的说明 10348817
捐赠科研通 3066317
什么是DOI,文献DOI怎么找? 1683676
邀请新用户注册赠送积分活动 809123
科研通“疑难数据库(出版商)”最低求助积分说明 765254