清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Machine Learning-Enabled High-Resolution Dynamic Deuterium MR Spectroscopic Imaging

子空间拓扑 计算机科学 人工智能 降噪 灵敏度(控制系统) 深度学习 噪音(视频) 正规化(语言学) 降维 信号子空间 机器学习 电子工程 图像(数学) 工程类
作者
Yudu Li,Yibo Zhao,Rong Guo,Tao Wang,Yi Zhang,Matthew R. Chrostek,Walter C. Low,Xiao‐Hong Zhu,Zhi‐Pei Liang,Wei Chen
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:40 (12): 3879-3890 被引量:22
标识
DOI:10.1109/tmi.2021.3101149
摘要

Deuterium magnetic resonance spectroscopic imaging (DMRSI) has recently been recognized as a potentially powerful tool for noninvasive imaging of brain energy metabolism and tumor. However, the low sensitivity of DMRSI has significantly limited its utility for both research and clinical applications. This work presents a novel machine learning-based method to address this limitation. The proposed method synergistically integrates physics-based subspace modeling and data-driven deep learning for effective denoising, making high-resolution dynamic DMRSI possible. Specifically, a novel subspace model was used to represent the dynamic DMRSI signals; deep neural networks were trained to capture the low-dimensional manifolds of the spectral and temporal distributions of practical dynamic DMRSI data. The learned subspace and manifold structures were integrated via a regularization formulation to remove measurement noise. Theoretical analysis, computer simulations, and in vivo experiments have been conducted to demonstrate the denoising efficacy of the proposed method which enabled high-resolution imaging capability. The translational potential was demonstrated in tumor-bearing rats, where the Warburg effect associated with cancer metabolism and tumor heterogeneity were successfully captured. The new method may not only provide an effective tool to enhance the sensitivity of DMRSI for basic research and clinical applications but also provide a framework for denoising other spatiospectral data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡然藏花完成签到 ,获得积分10
8秒前
无奈以南完成签到 ,获得积分10
10秒前
严珍珍完成签到 ,获得积分10
30秒前
yi完成签到,获得积分10
42秒前
研友_nxw2xL完成签到,获得积分10
1分钟前
muriel完成签到,获得积分10
1分钟前
迢迢万里完成签到 ,获得积分10
1分钟前
redamancy完成签到 ,获得积分10
1分钟前
1分钟前
lezbj99发布了新的文献求助10
1分钟前
foyefeng完成签到 ,获得积分10
2分钟前
lezbj99完成签到,获得积分10
2分钟前
drhwang完成签到,获得积分10
2分钟前
阜睿完成签到 ,获得积分10
2分钟前
3分钟前
naczx完成签到,获得积分0
4分钟前
Axs完成签到,获得积分10
4分钟前
Benhnhk21完成签到,获得积分10
5分钟前
6分钟前
hairgod发布了新的文献求助10
6分钟前
繁荣的心情应助Jack80采纳,获得40
6分钟前
隐形曼青应助kiko采纳,获得10
6分钟前
sowhat完成签到 ,获得积分10
6分钟前
hairgod完成签到,获得积分10
6分钟前
Johnson完成签到 ,获得积分10
6分钟前
Emperor完成签到 ,获得积分0
6分钟前
111完成签到 ,获得积分10
6分钟前
6分钟前
kiko发布了新的文献求助10
7分钟前
kiko完成签到,获得积分10
7分钟前
清风拂山岗完成签到,获得积分10
7分钟前
obedVL完成签到,获得积分10
8分钟前
英俊的铭应助科研通管家采纳,获得10
9分钟前
忘忧Aquarius完成签到,获得积分10
9分钟前
Linden_bd完成签到 ,获得积分10
9分钟前
方白秋完成签到,获得积分10
10分钟前
10分钟前
xingsixs发布了新的文献求助200
10分钟前
深情安青应助CC采纳,获得10
10分钟前
迷茫的一代完成签到,获得积分10
11分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798505
求助须知:如何正确求助?哪些是违规求助? 3344027
关于积分的说明 10318337
捐赠科研通 3060575
什么是DOI,文献DOI怎么找? 1679682
邀请新用户注册赠送积分活动 806746
科研通“疑难数据库(出版商)”最低求助积分说明 763340