浮游植物
环境科学
富营养化
水华
生物量(生态学)
生态系统
水位
海洋学
生态学
营养物
生物
地质学
地图学
地理
作者
Lin Ye,Lu Tan,Xinghua Wu,Qinghua Cai,B. Larry Li
标识
DOI:10.1016/j.scitotenv.2021.150948
摘要
Reservoirs are a rapidly increasing water body providing water supply, irrigation, and many other benefits for human societies globally. However, due to changes in hydrological conditions, building reservoirs tends to bring adverse effects such as eutrophication and phytoplankton blooms, reducing the ecosystem service values. This study focuses on using the empirical dynamic modeling (EDM), an emerging approach for nonlinear analysis, to investigate the nonlinear causal relationship of water level fluctuation (WLF) on phytoplankton biomass and then develop a quantitative model guiding effective phytoplankton blooms controlling based on water level regulations in reservoirs. Specifically, with 9-year continued daily observed data in the Three Gorges Reservoir, we examined the causal effects of different WLF parameters on the dynamics of phytoplankton blooms for the first time. We found that the water level change in the past 24 h (ΔWL) has the strongest causal effect on the daily dynamics of phytoplankton biomass among all WLF parameters (ΔWL, |ΔWL|, and the water level), with a time lag of 2 days. Moreover, EDM revealed a nonlinear relationship between ΔWL and daily dynamics of phytoplankton biomass and achieved a successful prediction for the chlorophyll a concentration 2-day ahead. Further scenario analyses found that both the rise and fall of water level will significantly reduce the chlorophyll a concentration when phytoplankton blooms occur. Nevertheless, on the whole, the rising water level has a more substantial effect on phytoplankton blooms than falling the water level. This result reveals that regulating ΔWL is a simple and effective approach in controlling phytoplankton blooms in reservoirs. Our study reported the nonlinear causal effect of ΔWL on the dynamics of chlorophyll a and provided a quantitative approach guiding effective phytoplankton blooms controlling based on the water level regulation, which might have a broad application in algal blooms controlling in reservoirs and similar waterbodies.
科研通智能强力驱动
Strongly Powered by AbleSci AI