Time-Series Growth Prediction Model Based on U-Net and Machine Learning in Arabidopsis

播种 拟南芥 产量(工程) 人工智能 机器学习 编码器 深度学习 数学 计算机科学 生物 农学 统计 基因 突变体 生物化学 冶金 材料科学
作者
Sungyul Chang,Unseok Lee,Min Jeong Hong,Yeong Deuk Jo,Jin‐Baek Kim
出处
期刊:Frontiers in Plant Science [Frontiers Media]
卷期号:12 被引量:12
标识
DOI:10.3389/fpls.2021.721512
摘要

Yield prediction for crops is essential information for food security. A high-throughput phenotyping platform (HTPP) generates the data of the complete life cycle of a plant. However, the data are rarely used for yield prediction because of the lack of quality image analysis methods, yield data associated with HTPP, and the time-series analysis method for yield prediction. To overcome limitations, this study employed multiple deep learning (DL) networks to extract high-quality HTTP data, establish an association between HTTP data and the yield performance of crops, and select essential time intervals using machine learning (ML). The images of Arabidopsis were taken 12 times under environmentally controlled HTPP over 23 days after sowing (DAS). First, the features from images were extracted using DL network U-Net with SE-ResXt101 encoder and divided into early (15-21 DAS) and late (∼21-23 DAS) pre-flowering developmental stages using the physiological characteristics of the Arabidopsis plant. Second, the late pre-flowering stage at 23 DAS can be predicted using the ML algorithm XGBoost, based only on a portion of the early pre-flowering stage (17-21 DAS). This was confirmed using an additional biological experiment (P < 0.01). Finally, the projected area (PA) was estimated into fresh weight (FW), and the correlation coefficient between FW and predicted FW was calculated as 0.85. This was the first study that analyzed time-series data to predict the FW of related but different developmental stages and predict the PA. The results of this study were informative and enabled the understanding of the FW of Arabidopsis or yield of leafy plants and total biomass consumed in vertical farming. Moreover, this study highlighted the reduction of time-series data for examining interesting traits and future application of time-series analysis in various HTPPs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助flowerliu采纳,获得10
刚刚
1秒前
2秒前
reinechiang完成签到,获得积分10
2秒前
yangling0124发布了新的文献求助10
3秒前
liuying发布了新的文献求助10
3秒前
zhangxiaodan发布了新的文献求助10
3秒前
缓慢含烟发布了新的文献求助10
3秒前
4秒前
大模型应助醒醒采纳,获得10
4秒前
我是老大应助yy悠采纳,获得10
5秒前
WNing发布了新的文献求助10
5秒前
阿邱发布了新的文献求助10
5秒前
蛇從革应助23采纳,获得50
5秒前
6秒前
Kz完成签到,获得积分10
8秒前
七彩光完成签到,获得积分20
8秒前
鲤鱼储发布了新的文献求助10
9秒前
11完成签到,获得积分10
9秒前
研友_VZG7GZ应助hehexi采纳,获得10
10秒前
HonglinGao发布了新的文献求助10
10秒前
11秒前
哈基米德应助star采纳,获得10
12秒前
白宏宝完成签到,获得积分20
12秒前
lee驳回了孙燕应助
13秒前
13秒前
xxybm完成签到,获得积分10
13秒前
冷傲迎梦发布了新的文献求助10
15秒前
愉快的雍给愉快的雍的求助进行了留言
15秒前
酷波er应助学土木的凯蒂猫采纳,获得200
15秒前
DH完成签到,获得积分10
15秒前
领导范儿应助研友_85YJY8采纳,获得10
16秒前
孙燕应助快乐小兰采纳,获得10
16秒前
慕青应助tigger采纳,获得10
16秒前
yy悠完成签到,获得积分20
16秒前
xxybm发布了新的文献求助10
17秒前
17秒前
NexusExplorer应助mashuai采纳,获得10
18秒前
18秒前
静静完成签到 ,获得积分10
18秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Genomic signature of non-random mating in human complex traits 2000
Semantics for Latin: An Introduction 1155
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4108343
求助须知:如何正确求助?哪些是违规求助? 3646445
关于积分的说明 11550471
捐赠科研通 3352436
什么是DOI,文献DOI怎么找? 1842066
邀请新用户注册赠送积分活动 908390
科研通“疑难数据库(出版商)”最低求助积分说明 825491