Deep Learning for Prediction of N2 Metastasis and Survival for Clinical Stage I Non–Small Cell Lung Cancer

医学 内科学 肿瘤科 阶段(地层学) 肺癌 转移 癌症 生物 古生物学
作者
Yifan Zhong,Yunlang She,Jiajun Deng,Shouyu Chen,Tingting Wang,Minglei Yang,Minjie Ma,Yongxiang Song,Haoyu Qi,Yin Wang,Jingyun Shi,Chunyan Wu,Dong Xie,Chang Chen
出处
期刊:Radiology [Radiological Society of North America]
卷期号:302 (1): 200-211 被引量:63
标识
DOI:10.1148/radiol.2021210902
摘要

Background Preoperative mediastinal staging is crucial for the optimal management of clinical stage I non–small cell lung cancer (NSCLC). Purpose To develop a deep learning signature for N2 metastasis prediction and prognosis stratification in clinical stage I NSCLC. Materials and Methods In this retrospective study conducted from May 2020 to October 2020 in a population with clinical stage I NSCLC, an internal cohort was adopted to establish a deep learning signature. Subsequently, the predictive efficacy and biologic basis of the proposed signature were investigated in an external cohort. A multicenter diagnostic trial (registration number: ChiCTR2000041310) was also performed to evaluate its clinical utility. Finally, on the basis of the N2 risk scores, the instructive significance of the signature in prognostic stratification was explored. The diagnostic efficiency was quantified with the area under the receiver operating characteristic curve (AUC), and the survival outcomes were assessed using the Cox proportional hazards model. Results A total of 3096 patients (mean age ± standard deviation, 60 years ± 9; 1703 men) were included in the study. The proposed signature achieved AUCs of 0.82, 0.81, and 0.81 in an internal test set (n = 266), external test cohort (n = 133), and prospective test cohort (n = 300), respectively. In addition, higher deep learning scores were associated with a lower frequency of EGFR mutation (P = .04), higher rate of ALK fusion (P = .02), and more activation of pathways of tumor proliferation (P < .001). Furthermore, in the internal test set and external cohort, higher deep learning scores were predictive of poorer overall survival (adjusted hazard ratio, 2.9; 95% CI: 1.2, 6.9; P = .02) and recurrence-free survival (adjusted hazard ratio, 3.2; 95% CI: 1.4, 7.4; P = .007). Conclusion The deep learning signature could accurately predict N2 disease and stratify prognosis in clinical stage I non–small cell lung cancer. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Park and Lee in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不黑不黑发布了新的文献求助10
刚刚
刚刚
刚刚
刚刚
明礼A完成签到,获得积分10
刚刚
车灵寒完成签到,获得积分10
刚刚
悦耳忘幽发布了新的文献求助10
1秒前
乐乐应助可爱的小paper采纳,获得10
2秒前
tywznba完成签到,获得积分10
2秒前
2秒前
青空完成签到 ,获得积分10
2秒前
小罗发布了新的文献求助10
3秒前
LIN发布了新的文献求助10
3秒前
等待的尔曼完成签到,获得积分10
4秒前
4秒前
4秒前
明天完成签到 ,获得积分10
4秒前
星宿完成签到,获得积分10
4秒前
4秒前
zoey完成签到,获得积分20
5秒前
刘小花完成签到,获得积分10
5秒前
lzl完成签到,获得积分10
5秒前
彭于晏应助徐不想搞科研采纳,获得10
5秒前
完美世界应助Iris采纳,获得10
5秒前
Hilda007应助可靠的南露采纳,获得10
6秒前
6秒前
念安发布了新的文献求助10
6秒前
tywznba发布了新的文献求助30
6秒前
orixero应助固态采纳,获得10
6秒前
TK完成签到,获得积分10
6秒前
Xu_ss发布了新的文献求助10
6秒前
6秒前
6秒前
番比助完成签到,获得积分20
6秒前
7秒前
Lc完成签到,获得积分10
8秒前
8秒前
8秒前
刘小花发布了新的文献求助50
9秒前
redamancy发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5402696
求助须知:如何正确求助?哪些是违规求助? 4521255
关于积分的说明 14084933
捐赠科研通 4435268
什么是DOI,文献DOI怎么找? 2434625
邀请新用户注册赠送积分活动 1426781
关于科研通互助平台的介绍 1405516