Deep Learning for Prediction of N2 Metastasis and Survival for Clinical Stage I Non–Small Cell Lung Cancer

医学 内科学 肿瘤科 阶段(地层学) 肺癌 转移 癌症 生物 古生物学
作者
Yifan Zhong,Yunlang She,Jiajun Deng,Shouyu Chen,Tingting Wang,Minglei Yang,Minjie Ma,Yongxiang Song,Haoyu Qi,Yin Wang,Jingyun Shi,Chunyan Wu,Dong Xie,Chang Chen
出处
期刊:Radiology [Radiological Society of North America]
卷期号:302 (1): 200-211 被引量:63
标识
DOI:10.1148/radiol.2021210902
摘要

Background Preoperative mediastinal staging is crucial for the optimal management of clinical stage I non–small cell lung cancer (NSCLC). Purpose To develop a deep learning signature for N2 metastasis prediction and prognosis stratification in clinical stage I NSCLC. Materials and Methods In this retrospective study conducted from May 2020 to October 2020 in a population with clinical stage I NSCLC, an internal cohort was adopted to establish a deep learning signature. Subsequently, the predictive efficacy and biologic basis of the proposed signature were investigated in an external cohort. A multicenter diagnostic trial (registration number: ChiCTR2000041310) was also performed to evaluate its clinical utility. Finally, on the basis of the N2 risk scores, the instructive significance of the signature in prognostic stratification was explored. The diagnostic efficiency was quantified with the area under the receiver operating characteristic curve (AUC), and the survival outcomes were assessed using the Cox proportional hazards model. Results A total of 3096 patients (mean age ± standard deviation, 60 years ± 9; 1703 men) were included in the study. The proposed signature achieved AUCs of 0.82, 0.81, and 0.81 in an internal test set (n = 266), external test cohort (n = 133), and prospective test cohort (n = 300), respectively. In addition, higher deep learning scores were associated with a lower frequency of EGFR mutation (P = .04), higher rate of ALK fusion (P = .02), and more activation of pathways of tumor proliferation (P < .001). Furthermore, in the internal test set and external cohort, higher deep learning scores were predictive of poorer overall survival (adjusted hazard ratio, 2.9; 95% CI: 1.2, 6.9; P = .02) and recurrence-free survival (adjusted hazard ratio, 3.2; 95% CI: 1.4, 7.4; P = .007). Conclusion The deep learning signature could accurately predict N2 disease and stratify prognosis in clinical stage I non–small cell lung cancer. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Park and Lee in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
铃铛完成签到,获得积分10
刚刚
1秒前
1秒前
zls发布了新的文献求助10
1秒前
2秒前
Tperm发布了新的文献求助30
2秒前
3秒前
石头完成签到,获得积分10
3秒前
轩贝完成签到,获得积分10
4秒前
4秒前
wenbo完成签到,获得积分10
4秒前
lsq108发布了新的文献求助10
5秒前
lan应助是我呀小夏采纳,获得10
6秒前
lll完成签到,获得积分10
6秒前
土块发布了新的文献求助10
6秒前
聪慧雅霜完成签到,获得积分10
7秒前
彭于晏应助蛋卷采纳,获得10
7秒前
高高高完成签到,获得积分10
8秒前
9秒前
10秒前
10秒前
8湖公园发布了新的文献求助10
10秒前
orixero应助奶茶不加珍珠采纳,获得10
11秒前
顾矜应助Yunis采纳,获得20
12秒前
树阴照水完成签到,获得积分10
12秒前
13秒前
13秒前
14秒前
小困困朱发布了新的文献求助10
14秒前
树阴照水发布了新的文献求助10
15秒前
跳跃的凌文完成签到 ,获得积分10
16秒前
fjfzfisher发布了新的文献求助10
16秒前
风中云发布了新的文献求助10
17秒前
fayefan发布了新的文献求助30
17秒前
17秒前
17秒前
Jalin完成签到 ,获得积分10
17秒前
花卷发布了新的文献求助50
18秒前
虚心的眼神完成签到,获得积分20
18秒前
lan应助是我呀小夏采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Instant Bonding Epoxy Technology 500
Methodology for the Human Sciences 500
ASHP Injectable Drug Information 2025 Edition 400
DEALKOXYLATION OF β-CYANOPROPIONALDEYHDE DIMETHYL ACETAL 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Cement Chemistry Calcium silicates and anhydrous Portland cement 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4369941
求助须知:如何正确求助?哪些是违规求助? 3868110
关于积分的说明 12060210
捐赠科研通 3510770
什么是DOI,文献DOI怎么找? 1926634
邀请新用户注册赠送积分活动 968550
科研通“疑难数据库(出版商)”最低求助积分说明 867564