Unsupervised Recurrent All-Pairs Field Transforms for Particle Image Velocimetry

人工智能 粒子图像测速 无监督学习 计算机科学 深度学习 卷积神经网络 光流 领域(数学) 机器学习 一般化 人工神经网络 模式识别(心理学) 图像(数学) 数学 物理 数学分析 热力学 湍流 纯数学
作者
Christian Lagemann,Michael Klaas,Wolfgang Schröder
出处
期刊:International Symposium on Particle Image Velocimetry 卷期号:1 (1) 被引量:4
标识
DOI:10.18409/ispiv.v1i1.120
摘要

Convolutional neural networks have been successfully used in a variety of tasks and recently have been adapted to improve processing steps in Particle-Image Velocimetry (PIV). Recurrent All-Pairs Fields Transforms (RAFT) as an optical flow estimation backbone achieve a new state-of-the-art accuracy on public synthetic PIV datasets, generalize well to unknown real-world experimental data, and allow a significantly higher spatial resolution compared to state-of-the-art PIV algorithms based on cross-correlation methods. However, the huge diversity in dynamic flows and varying particle image conditions require PIV processing schemes to have high generalization capabilities to unseen flow and lighting conditions. If these conditions vary strongly compared to the synthetic training data, the performance of fully supervised learning based PIV tools might degrade. To tackle these issues, our training procedure is augmented by an unsupervised learning paradigm which remedy the need of a general synthetic dataset and theoretically boosts the inference capability of a deep learning model in a way being more relevant to challenging real-world experimental data. Therefore, we propose URAFT-PIV, an unsupervised deep neural network architecture for optical flow estimation in PIV applications and show that our combination of state-of-the-art deep learning pipelines and unsupervised learning achieves a new state-of-the-art accuracy for unsupervised PIV networks while performing similar to supervisedly trained LiteFlowNet based competitors. Furthermore, we show that URAFT-PIV also performs well under more challenging flow field and image conditions such as low particle density and changing light conditions and demonstrate its generalization capability based on an outof-the-box application to real-world experimental data. Our tests also suggest that current state-of-the-art loss functions might be a limiting factor for the performance of unsupervised optical flow estimation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Deyong完成签到,获得积分10
刚刚
LaowuAIchirou发布了新的文献求助10
刚刚
刚刚
李健的小迷弟应助ecnuzdd采纳,获得10
1秒前
三年H发布了新的文献求助10
1秒前
科研通AI5应助机智的白猫采纳,获得10
1秒前
2秒前
2秒前
Lucas应助向七郎采纳,获得10
2秒前
2秒前
CompJIN发布了新的文献求助30
2秒前
Luna发布了新的文献求助10
3秒前
123456完成签到,获得积分10
4秒前
4秒前
赘婿应助心信鑫采纳,获得30
4秒前
aftertaste发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
澄子发布了新的文献求助100
6秒前
7秒前
cyanpomelo完成签到,获得积分10
8秒前
研友_Z11ONZ发布了新的文献求助10
8秒前
8秒前
金杯发布了新的文献求助10
9秒前
nkmenghan发布了新的文献求助20
9秒前
所所应助Traci采纳,获得10
10秒前
liujunhong完成签到,获得积分10
10秒前
文艺南松完成签到,获得积分10
10秒前
Yan0909完成签到,获得积分10
10秒前
yyy完成签到,获得积分10
10秒前
11秒前
哎哟我去完成签到,获得积分10
11秒前
科研通AI5应助害羞的初蝶采纳,获得10
11秒前
TJC完成签到,获得积分10
12秒前
NexusExplorer应助流云采纳,获得10
12秒前
文艺南松发布了新的文献求助10
12秒前
13秒前
jjgbmt完成签到,获得积分10
14秒前
xlz110完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Fanaroff and Martin's Neonatal-Perinatal Medicine : Diseases of the Fetus and Infant Elsevier; 2024 1000
中国兽药产业发展报告 1000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4417910
求助须知:如何正确求助?哪些是违规求助? 3899198
关于积分的说明 12125783
捐赠科研通 3545133
什么是DOI,文献DOI怎么找? 1945479
邀请新用户注册赠送积分活动 985648
科研通“疑难数据库(出版商)”最低求助积分说明 882038