亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Retrieving and Utilizing Hypothetical Neutral Losses from Tandem Mass Spectra for Spectral Similarity Analysis and Unknown Metabolite Annotation

化学 结构相似性 代谢物 相似性(几何) 注释 串联质谱法 假阳性悖论 计算生物学 代谢组学 质谱法 生物系统 计算机科学 人工智能 色谱法 生物化学 生物 图像(数学)
作者
Shipei Xing,Yan Hu,Zhihui Yin,Min Liu,Xiaoyu Tang,Mingliang Fang,Tao Huan
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:92 (21): 14476-14483 被引量:38
标识
DOI:10.1021/acs.analchem.0c02521
摘要

Spectral similarity comparison through tandem mass spectrometry (MS2) is a powerful approach to annotate known and unknown metabolic features in mass spectrometry (MS)-based untargeted metabolomics. In this work, we proposed the concept of hypothetical neutral loss (HNL), which is the mass difference between a pair of fragment ions in a MS2 spectrum. We demonstrated that HNL values contain core structural information that can be used to accurately assess the structural similarity between two MS2 spectra. We then developed the Core Structure-based Search (CSS) algorithm based on HNL values. CSS was validated with sets of hundreds of randomly selected metabolites and their reference MS2 spectra, showing significantly improved correlation between spectral and structural similarities. Compared to state-of-the-art spectral similarity algorithms, CSS generates better ranking of structurally relevant chemicals among false positives. Combining CSS, HNL library, and biotransformation database, we further developed Metabolite core structure-based Search (McSearch), a novel computational solution to facilitate the annotation of unknown metabolites using the reference MS2 spectra of their structural analogs. McSearch generates better results in the Critical Assessment of Small Molecule Identification (CASMI) 2017 data set than conventional unknown feature annotation programs. McSearch was also tested in experimental MS2 data of xenobiotic metabolite derivatives belonging to three different metabolic pathways. Our results confirmed that McSearch can better capture the underlying structural similarity between MS2 spectra. Overall, this work provides a novel direction for metabolite annotation via HNL values, paving the way for annotating metabolites using their structurally similar compounds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
iii发布了新的文献求助50
7秒前
16秒前
科研通AI2S应助龚幻梦采纳,获得10
17秒前
去去去去发布了新的文献求助10
22秒前
情怀应助去去去去采纳,获得10
32秒前
55秒前
yangyang完成签到,获得积分20
56秒前
yangyang发布了新的文献求助10
1分钟前
漠北完成签到,获得积分10
1分钟前
漠北发布了新的文献求助10
1分钟前
深情安青应助漠北采纳,获得10
1分钟前
zhl完成签到,获得积分10
2分钟前
2分钟前
3分钟前
Corn_Dog发布了新的文献求助10
3分钟前
彭于晏应助Corn_Dog采纳,获得10
3分钟前
3分钟前
Corn_Dog发布了新的文献求助10
4分钟前
iii完成签到,获得积分10
5分钟前
星辰大海应助iii采纳,获得50
5分钟前
5分钟前
三人水明完成签到 ,获得积分10
6分钟前
xuexinxin完成签到,获得积分10
7分钟前
8分钟前
去去去去发布了新的文献求助10
8分钟前
Vino完成签到,获得积分10
8分钟前
香蕉觅云应助去去去去采纳,获得10
9分钟前
科研通AI2S应助GAOGONGZI采纳,获得10
9分钟前
10分钟前
迷路炎彬发布了新的文献求助10
10分钟前
桐桐应助迷路炎彬采纳,获得10
10分钟前
10分钟前
去去去去发布了新的文献求助10
10分钟前
11分钟前
李爱国应助去去去去采纳,获得10
11分钟前
汉堡包应助姜jiang采纳,获得10
11分钟前
咸鱼本鱼完成签到 ,获得积分10
11分钟前
12分钟前
漠北发布了新的文献求助10
12分钟前
乐乐应助漠北采纳,获得10
12分钟前
高分求助中
The ACS Guide to Scholarly Communication 2500
Microlepidoptera Palaearctica, Volumes 1 and 3 - 13 (12-Volume Set) [German] 1122
Achieving 99% link uptime on a fleet of 100G space laser inter-satellite links in LEO 1000
Pharmacogenomics: Applications to Patient Care, Third Edition 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Ethnicities: Media, Health, and Coping 700
Ожившие листья и блуждающие цветы. Практическое руководство по содержанию богомолов [Alive leaves and wandering flowers. A practical guide for keeping praying mantises] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3090960
求助须知:如何正确求助?哪些是违规求助? 2743271
关于积分的说明 7572834
捐赠科研通 2393899
什么是DOI,文献DOI怎么找? 1269496
科研通“疑难数据库(出版商)”最低求助积分说明 614345
版权声明 598756