Retrieving and Utilizing Hypothetical Neutral Losses from Tandem Mass Spectra for Spectral Similarity Analysis and Unknown Metabolite Annotation

化学 结构相似性 代谢物 相似性(几何) 注释 串联质谱法 假阳性悖论 计算生物学 代谢组学 质谱法 生物系统 模式识别(心理学) 计算机科学 人工智能 色谱法 生物化学 生物 图像(数学)
作者
Shipei Xing,Yan Fei Hu,Zixuan Yin,Min Liu,Xiaoyu Tang,Mingliang Fang,Tao Huan
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:92 (21): 14476-14483 被引量:45
标识
DOI:10.1021/acs.analchem.0c02521
摘要

Spectral similarity comparison through tandem mass spectrometry (MS2) is a powerful approach to annotate known and unknown metabolic features in mass spectrometry (MS)-based untargeted metabolomics. In this work, we proposed the concept of hypothetical neutral loss (HNL), which is the mass difference between a pair of fragment ions in a MS2 spectrum. We demonstrated that HNL values contain core structural information that can be used to accurately assess the structural similarity between two MS2 spectra. We then developed the Core Structure-based Search (CSS) algorithm based on HNL values. CSS was validated with sets of hundreds of randomly selected metabolites and their reference MS2 spectra, showing significantly improved correlation between spectral and structural similarities. Compared to state-of-the-art spectral similarity algorithms, CSS generates better ranking of structurally relevant chemicals among false positives. Combining CSS, HNL library, and biotransformation database, we further developed Metabolite core structure-based Search (McSearch), a novel computational solution to facilitate the annotation of unknown metabolites using the reference MS2 spectra of their structural analogs. McSearch generates better results in the Critical Assessment of Small Molecule Identification (CASMI) 2017 data set than conventional unknown feature annotation programs. McSearch was also tested in experimental MS2 data of xenobiotic metabolite derivatives belonging to three different metabolic pathways. Our results confirmed that McSearch can better capture the underlying structural similarity between MS2 spectra. Overall, this work provides a novel direction for metabolite annotation via HNL values, paving the way for annotating metabolites using their structurally similar compounds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
圈圈发布了新的文献求助10
刚刚
亮亮完成签到,获得积分10
刚刚
没有稗子完成签到 ,获得积分10
刚刚
科研小民工应助明亮的斩采纳,获得30
刚刚
1秒前
1秒前
小可发布了新的文献求助10
1秒前
莽哥完成签到,获得积分10
1秒前
小邢一定行完成签到,获得积分10
1秒前
1秒前
叶飞荷发布了新的文献求助10
1秒前
明月清风完成签到,获得积分10
1秒前
Ymj发布了新的文献求助10
1秒前
1秒前
诗谙发布了新的文献求助10
2秒前
屁王发布了新的文献求助10
2秒前
Eric完成签到,获得积分10
2秒前
2秒前
柒柒完成签到,获得积分20
2秒前
超甜大西瓜完成签到,获得积分10
3秒前
3秒前
Evelyn发布了新的文献求助10
4秒前
168521kf发布了新的文献求助10
4秒前
传奇3应助wwwww采纳,获得10
4秒前
5秒前
英姑应助袁访天采纳,获得10
5秒前
5秒前
WS发布了新的文献求助10
5秒前
5秒前
咿咿呀呀发布了新的文献求助10
5秒前
喻辰星完成签到,获得积分10
6秒前
许女士完成签到,获得积分10
6秒前
xinxin完成签到,获得积分10
8秒前
8秒前
8秒前
悦耳的冰枫完成签到 ,获得积分10
8秒前
现代的又柔完成签到,获得积分10
8秒前
羽毛发布了新的文献求助10
8秒前
samtol完成签到,获得积分10
9秒前
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740