Retrieving and Utilizing Hypothetical Neutral Losses from Tandem Mass Spectra for Spectral Similarity Analysis and Unknown Metabolite Annotation

化学 结构相似性 代谢物 相似性(几何) 注释 串联质谱法 假阳性悖论 计算生物学 代谢组学 质谱法 生物系统 模式识别(心理学) 计算机科学 人工智能 色谱法 生物化学 生物 图像(数学)
作者
Shipei Xing,Yan Fei Hu,Zixuan Yin,Min Liu,Xiaoyu Tang,Mingliang Fang,Tao Huan
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:92 (21): 14476-14483 被引量:45
标识
DOI:10.1021/acs.analchem.0c02521
摘要

Spectral similarity comparison through tandem mass spectrometry (MS2) is a powerful approach to annotate known and unknown metabolic features in mass spectrometry (MS)-based untargeted metabolomics. In this work, we proposed the concept of hypothetical neutral loss (HNL), which is the mass difference between a pair of fragment ions in a MS2 spectrum. We demonstrated that HNL values contain core structural information that can be used to accurately assess the structural similarity between two MS2 spectra. We then developed the Core Structure-based Search (CSS) algorithm based on HNL values. CSS was validated with sets of hundreds of randomly selected metabolites and their reference MS2 spectra, showing significantly improved correlation between spectral and structural similarities. Compared to state-of-the-art spectral similarity algorithms, CSS generates better ranking of structurally relevant chemicals among false positives. Combining CSS, HNL library, and biotransformation database, we further developed Metabolite core structure-based Search (McSearch), a novel computational solution to facilitate the annotation of unknown metabolites using the reference MS2 spectra of their structural analogs. McSearch generates better results in the Critical Assessment of Small Molecule Identification (CASMI) 2017 data set than conventional unknown feature annotation programs. McSearch was also tested in experimental MS2 data of xenobiotic metabolite derivatives belonging to three different metabolic pathways. Our results confirmed that McSearch can better capture the underlying structural similarity between MS2 spectra. Overall, this work provides a novel direction for metabolite annotation via HNL values, paving the way for annotating metabolites using their structurally similar compounds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yj91完成签到,获得积分10
2秒前
小明关注了科研通微信公众号
3秒前
稳重向南完成签到,获得积分10
5秒前
10秒前
吴建文完成签到 ,获得积分10
11秒前
拾石子完成签到 ,获得积分10
16秒前
zz完成签到 ,获得积分10
19秒前
21秒前
汉堡包应助stws采纳,获得10
21秒前
关中人完成签到,获得积分10
22秒前
adam完成签到,获得积分10
24秒前
FashionBoy应助科研通管家采纳,获得10
25秒前
25秒前
情怀应助科研通管家采纳,获得10
25秒前
NexusExplorer应助科研通管家采纳,获得10
25秒前
科研通AI5应助科研通管家采纳,获得10
25秒前
彭于晏应助科研通管家采纳,获得10
25秒前
Lucas应助科研通管家采纳,获得10
25秒前
25秒前
25秒前
shiyi完成签到,获得积分10
25秒前
燕子应助科研通管家采纳,获得100
25秒前
25秒前
26秒前
动漫大师发布了新的文献求助10
26秒前
stws完成签到,获得积分20
26秒前
左右脑完成签到,获得积分10
27秒前
Lucas应助Ztx采纳,获得10
28秒前
科研通AI5应助小小文采纳,获得30
30秒前
雨成完成签到 ,获得积分10
31秒前
shiyi发布了新的文献求助10
33秒前
jjj完成签到,获得积分10
33秒前
supertkeb应助骉骉采纳,获得10
34秒前
Jinnnnn完成签到 ,获得积分10
35秒前
Yqx完成签到,获得积分10
37秒前
zumrat关注了科研通微信公众号
38秒前
SYLH应助DrSong采纳,获得20
38秒前
gzslwddhjx完成签到,获得积分10
40秒前
46秒前
伍柒完成签到,获得积分10
48秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Individualized positive end-expiratory pressure in laparoscopic surgery: a randomized controlled trial 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3761774
求助须知:如何正确求助?哪些是违规求助? 3305540
关于积分的说明 10134658
捐赠科研通 3019564
什么是DOI,文献DOI怎么找? 1658226
邀请新用户注册赠送积分活动 791989
科研通“疑难数据库(出版商)”最低求助积分说明 754751