高斯噪声
卡尔曼滤波器
噪音(视频)
稳健性(进化)
控制理论(社会学)
计算机科学
算法
高斯分布
中值滤波器
二进制数
转化(遗传学)
噪声测量
数学
白噪声
加性高斯白噪声
人工智能
降噪
物理
电信
化学
算术
图像处理
控制(管理)
基因
图像(数学)
生物化学
量子力学
作者
Zhihong Deng,Shi Lei,Lijian Yin,Yuanqing Xia,Baoyu Huo
出处
期刊:IEEE Sensors Journal
[Institute of Electrical and Electronics Engineers]
日期:2020-03-12
卷期号:20 (14): 7766-7773
被引量:51
标识
DOI:10.1109/jsen.2020.2980354
摘要
Motivated by tracking applications with sensor networks under non-Gaussian noise and intermittent observations, this paper considers a maximum correntropy unscented Kalman filter (MCUKF). MCUKF is based on maximum correntropy criterion (MCC) and unscented transformation (UT) which can deal with both non-Gaussian noise and intermittent observations. The intermittent observations are described by a binary sequence satisfying some properties. The MCC is used to deal with non-Gaussian noise and improves the robustness. Moreover, the arrival probabilities under non-Gaussian noise (shot noise and Gaussian mixture noise) and intermittent observations are given. The performance of the presented algorithm is verified by illustrating numerical examples.
科研通智能强力驱动
Strongly Powered by AbleSci AI