奇异值分解
张量(固有定义)
秩(图论)
基质(化学分析)
分解
集合(抽象数据类型)
塔克分解
算法
数学
QR分解
订单(交换)
计算机科学
域代数上的
张量分解
组合数学
纯数学
特征向量
物理
生态学
材料科学
财务
量子力学
经济
复合材料
生物
程序设计语言
作者
Matthias Beaupère,David Frenkiel,Laura Grigori
摘要
We present in this paper a parallel algorithm that generates a low-rank approximation of a distributed tensor using QR decomposition with tournament pivoting (QRTP). The algorithm, which is a parallel variant of the higher-order singular value decomposition, generates factor matrices for a Tucker decomposition by applying QRTP to the unfolding matrices of a tensor distributed blockwise (by subtensor) on a set of processors. For each unfolding mode the algorithm logically reorganizes (unfolds) the processors so that the associated unfolding matrix has a suitable logical distribution. We also establish error bounds between a tensor and the compressed version of the tensor generated by the algorithm.
科研通智能强力驱动
Strongly Powered by AbleSci AI