清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Highly Quantum-Yield Enhancement of InP Quantum-Dot Emitting Red-Light Via Potassium Doping for Quantum-Dot Organic-Light-Emitting-Diode Display

量子点 量子产额 材料科学 光电子学 兴奋剂 离子 发光二极管 发光 光化学 化学 荧光 光学 有机化学 物理
作者
Seungjae Lee,Jieun Lee,Changjin Lee,Jea‐Gun Park
出处
期刊:Meeting abstracts 卷期号:MA2020-02 (42): 2728-2728
标识
DOI:10.1149/ma2020-02422728mtgabs
摘要

Quantum dots (QD) have been researched intensively among several luminescent materials because they can simply adjust wavelength, high efficiency, high stability, and high color purity properties. In particular, eco-friendly InP based core-shell QDs without environmental regulations (i.e., restriction of hazardous substances in Europe) has been a great of attention. 1 However, it is difficult to synthesize InP-based core-shell QDs, which requires a high temperature, a long reaction time, and a high reactivity precursor since the InP-based core-shell QDs need a strong covalent bonds, degrading quantum yield(QY) 2 . For this reason, many defects in QDs are generated during a InP core growth. Among the blue(B)-, green(G)-, and red(R)-light emitting QDs, especially R-light emitting InP based core-shell QDs contain numerous crystalline defects since the core size should be increased to reduce the energy band gap. In our study, we enhanced highly QY of R-light emitting InP based core-shell QDs(R-QDs) by doping potassium ions via injecting potassium ion precursor such as potassium iodide during a InP core growth. We characterized the mechanism why potassium ion doping highly enhanced QY by observing the crystallinity of core-shell QD and electron paramagnetic resonance(EPR) analysis. In general, the R-QDs contain vacancy defect in the InP core-QDs which emit the red-light with ~625-nm in wavelength, degrading QY by lattice scattering, as shown in Fig. 1(a). These vacancy defects induced lattice-scattering and cause a decrease of QY. Here, the vacancy defects in the InP core-QDs would be passivated by doping potassium ions via using potassium iodide as a dopant, as shown in Fig. 1(b). In the InP core-QDs, the mole fraction of potassium ions to indium ions linearly increased with the potassium iodide concentration, measured by inductively coupled plasma atomic emission spectroscopy (ICP-AES), as shown in Fig. 1(c). Then, the InP core/ZnSe inter-shell/ZnSeS inter-shell/ZnS oueter-shell QDs (i.e.; InP core-shell QDs) were synthesized by using a precipitation method. The QY of the InP core-shell QDs peaked at a specific potassium iodide concentration; i.e., 91% at the potassium iodide concentration of 3%, as shown in Fig. 1(d). Otherwise, both full-width at half maximum (FWHM) and the wavelength emitting red-light gradually increased with the potassium iodide concentration. To understand the dependency of QY on the potassium iodide concentration, the crystallinity of InP core-shell QDs were investigated as a function of the potassium iodide concentration during growing the InP core-QDs, where in four different crystalline plane peaks were found; (unknown), (111), (220), and (311), as shown in Fig. 1(e). Particularly, the crystalline peak intensity of (unknown) rapidly increased with increasing QY, indicating the doping of potassium ions during growing the InP core-QDs passivated vacancy defects so that it suppressed an un-proper growth along unknown crystalline direction, as shown in Fig. 1(e). In addition, the exciton lifetime exponentially increased with QY, measured by time-resolved photoluminescence (TRPL), meaning that the passivation of vacancy defects with potassium ions enhanced the exciton lifetime of the InP core-shell QDs. It was found that there was a good correlation between QY and the crystalline peak intensity of (unknown) or the exciton lifetime, implying that the passivation of vacancy defects in the InP core-QDs by doping potassium iodide ions would enhance the QY of the InP core-shell QDs, as shown in Fig.1(f). Finally, the international commission on illumination (CIE) 1931 color spaces of a QD OLED display using R-, G-, and B-QD functional color filters, as shown in Fig.1(g), achieved 121.7% (NTSC) and 91.1% (Rec. 2020), as shown in Fig. 1(h) inset figure. Reference [1] Tamang, S.; Lincheneau, C.; Hermans, Y.; Jeong, S.; Reiss, P.; (2016). Chemistry of InP Nanocrystal Syntheses. Chem. Mater. 28, 2491−2506 [2] Jang, E.; Kim, Y.; Won, Y.; Jang, H.; Choi, S.; (2020). Environmentally Friendly InP-Based Quantum Dots for Efficient Wide Color Gamut Displays. ACS Energy Lett. 5, 1316−1327 Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鱼鱼鱼完成签到,获得积分10
3秒前
binfo发布了新的文献求助10
3秒前
向秋完成签到,获得积分10
7秒前
三微之廿发布了新的文献求助10
17秒前
向秋发布了新的文献求助10
20秒前
隐形曼青应助felix采纳,获得30
24秒前
如歌完成签到,获得积分10
48秒前
binfo完成签到,获得积分10
49秒前
雪山飞龙发布了新的文献求助10
50秒前
玛卡巴卡爱吃饭完成签到 ,获得积分10
52秒前
1分钟前
felix发布了新的文献求助30
1分钟前
在水一方应助柏特瑞采纳,获得10
1分钟前
1分钟前
woxinyouyou完成签到,获得积分0
1分钟前
Wang_JN完成签到 ,获得积分10
1分钟前
felix发布了新的文献求助10
2分钟前
lovexz完成签到,获得积分10
2分钟前
felix发布了新的文献求助80
2分钟前
2分钟前
打打应助三微之廿采纳,获得10
2分钟前
2分钟前
三微之廿发布了新的文献求助10
2分钟前
3分钟前
柏特瑞发布了新的文献求助10
3分钟前
felix发布了新的文献求助30
3分钟前
慕青应助三微之廿采纳,获得10
3分钟前
3分钟前
鬼见愁应助幻影采纳,获得20
3分钟前
科研仙人完成签到 ,获得积分10
3分钟前
三微之廿发布了新的文献求助10
3分钟前
领导范儿应助三微之廿采纳,获得10
4分钟前
4分钟前
科研通AI5应助felix采纳,获得30
4分钟前
wanci应助lukehan采纳,获得10
4分钟前
5分钟前
lukehan完成签到,获得积分10
5分钟前
lukehan发布了新的文献求助10
5分钟前
波西米亚完成签到,获得积分10
5分钟前
5分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
镇江南郊八公洞林区鸟类生态位研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4162310
求助须知:如何正确求助?哪些是违规求助? 3697828
关于积分的说明 11675069
捐赠科研通 3388441
什么是DOI,文献DOI怎么找? 1858134
邀请新用户注册赠送积分活动 918833
科研通“疑难数据库(出版商)”最低求助积分说明 831695