Adaptive Stress Testing: Finding Likely Failure Events with Reinforcement Learning

计算机科学 可观测性 压力测试(软件) 随机测试 强化学习 可见的 测试用例 机器学习 数学 应用数学 量子力学 物理 回归分析 程序设计语言
作者
Ritchie Lee,Ole J. Mengshoel,Anshu Saksena,Ryan W. Gardner,Daniel Genin,Joshua Silbermann,Michael J. Owen,Mykel J. Kochenderfer
出处
期刊:Journal of Artificial Intelligence Research [AI Access Foundation]
卷期号:69: 1165-1201 被引量:46
标识
DOI:10.1613/jair.1.12190
摘要

Finding the most likely path to a set of failure states is important to the analysis of safety-critical systems that operate over a sequence of time steps, such as aircraft collision avoidance systems and autonomous cars. In many applications such as autonomous driving, failures cannot be completely eliminated due to the complex stochastic environment in which the system operates. As a result, safety validation is not only concerned about whether a failure can occur, but also discovering which failures are most likely to occur. This article presents adaptive stress testing (AST), a framework for finding the most likely path to a failure event in simulation. We consider a general black box setting for partially observable and continuous-valued systems operating in an environment with stochastic disturbances. We formulate the problem as a Markov decision process and use reinforcement learning to optimize it. The approach is simulation-based and does not require internal knowledge of the system, making it suitable for black-box testing of large systems. We present different formulations depending on whether the state is fully observable or partially observable. In the latter case, we present a modified Monte Carlo tree search algorithm that only requires access to the pseudorandom number generator of the simulator to overcome partial observability. We also present an extension of the framework, called differential adaptive stress testing (DAST), that can find failures that occur in one system but not in another. This type of differential analysis is useful in applications such as regression testing, where we are concerned with finding areas of relative weakness compared to a baseline. We demonstrate the effectiveness of the approach on an aircraft collision avoidance application, where a prototype aircraft collision avoidance system is stress tested to find the most likely scenarios of near mid-air collision.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
myuniv完成签到,获得积分10
刚刚
阿祖完成签到,获得积分10
6秒前
mxq完成签到,获得积分10
6秒前
无语的小熊猫完成签到 ,获得积分10
9秒前
lojack完成签到,获得积分10
10秒前
彭于晏应助如意的书南采纳,获得10
18秒前
20秒前
20秒前
CYY发布了新的文献求助10
24秒前
25秒前
26秒前
yue发布了新的文献求助10
30秒前
30秒前
31秒前
cccc发布了新的文献求助10
33秒前
33秒前
chengche完成签到,获得积分10
35秒前
烟花应助我不是阿呆采纳,获得10
35秒前
chen测发布了新的文献求助10
36秒前
Xdz完成签到 ,获得积分10
36秒前
cccc完成签到,获得积分10
38秒前
Haibrar完成签到 ,获得积分10
41秒前
43秒前
科研通AI5应助chengche采纳,获得10
44秒前
甜蜜唯雪完成签到,获得积分10
46秒前
47秒前
pluto应助雨水采纳,获得10
50秒前
倪好完成签到,获得积分10
51秒前
科目三应助甜蜜唯雪采纳,获得10
53秒前
yue完成签到,获得积分10
57秒前
WSGQT完成签到 ,获得积分10
58秒前
1分钟前
1分钟前
香蕉觅云应助郁金香采纳,获得10
1分钟前
温暖涫完成签到 ,获得积分10
1分钟前
yorkin完成签到 ,获得积分10
1分钟前
叶映安发布了新的文献求助10
1分钟前
1分钟前
土土驳回了英姑应助
1分钟前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778382
求助须知:如何正确求助?哪些是违规求助? 3324102
关于积分的说明 10217105
捐赠科研通 3039323
什么是DOI,文献DOI怎么找? 1667963
邀请新用户注册赠送积分活动 798447
科研通“疑难数据库(出版商)”最低求助积分说明 758385