自编码
深度学习
学习迁移
降噪
计算机科学
机器学习
人工神经网络
贝叶斯概率
模式识别(心理学)
人工智能
数据挖掘
作者
Jingshu Wang,Divyansh Agarwal,Mo Huang,Gang Hu,Zilu Zhou,Chengzhong Ye,Nancy Zhang
出处
期刊:Nature Methods
[Nature Portfolio]
日期:2019-08-30
卷期号:16 (9): 875-878
被引量:177
标识
DOI:10.1038/s41592-019-0537-1
摘要
Single-cell RNA sequencing (scRNA-seq) data are noisy and sparse. Here, we show that transfer learning across datasets remarkably improves data quality. By coupling a deep autoencoder with a Bayesian model, SAVER-X extracts transferable gene−gene relationships across data from different labs, varying conditions and divergent species, to denoise new target datasets. SAVER-X trains a deep neural network for transfer learning that improves the quality of scRNA-seq data using prior information learnt from existing public studies.
科研通智能强力驱动
Strongly Powered by AbleSci AI