Gas Sensor Array Fault Diagnosis Based on Multi-Dimensional Fusion, an Attention Mechanism, and Multi-Task Learning

计算机科学 断层(地质) 人工智能 任务(项目管理) 特征(语言学) 传感器融合 模式识别(心理学) 数据挖掘 机器学习 工程类 语言学 地质学 哲学 地震学 系统工程
作者
Pengyu Huang,Qingfeng Wang,Haotian Chen,Geyu Lu
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:23 (18): 7836-7836 被引量:2
标识
DOI:10.3390/s23187836
摘要

With the development of gas sensor arrays and computational technology, machine olfactory systems have been widely used in environmental monitoring, medical diagnosis, and other fields. The reliable and stable operation of gas sensing systems depends heavily on the accuracy of the sensors outputs. Therefore, the realization of accurate gas sensor array fault diagnosis is essential to monitor the working status of sensor arrays and ensure the normal operation of the whole system. The existing methods extract features from a single dimension and require the separate training of models for multiple diagnosis tasks, which limits diagnostic accuracy and efficiency. To address these limitations, for this study, a novel fault diagnosis network based on multi-dimensional feature fusion, an attention mechanism, and multi-task learning, MAM-Net, was developed and applied to gas sensor arrays. First, feature fusion models were applied to extract deep and comprehensive features from the original data in multiple dimensions. A residual network equipped with convolutional block attention modules and a Bi-LSTM network were designed for two-dimensional and one-dimensional signals to capture spatial and temporal features simultaneously. Subsequently, a concatenation layer was constructed using feature stitching to integrate the fault details of different dimensions and avoid ignoring useful information. Finally, a multi-task learning module was designed for the parallel learning of the sensor fault diagnosis to effectively improve the diagnosis capability. The experimental results derived from using the proposed framework on gas sensor datasets across different amounts of data, balanced and unbalanced datasets, and different experimental settings show that the proposed framework outperforms the other available methods and demonstrates good recognition accuracy and robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
羽化成仙完成签到 ,获得积分10
1秒前
wang完成签到 ,获得积分10
2秒前
激情的乌龟完成签到,获得积分10
3秒前
七七发布了新的文献求助10
4秒前
5秒前
6秒前
Lucas应助Pupil采纳,获得10
13秒前
可靠小凝完成签到 ,获得积分10
14秒前
zy完成签到,获得积分10
15秒前
赘婿应助jjwen采纳,获得10
19秒前
20秒前
cdercder应助科研通管家采纳,获得20
20秒前
Leif应助科研通管家采纳,获得10
20秒前
香蕉觅云应助科研通管家采纳,获得10
20秒前
Leif应助科研通管家采纳,获得10
20秒前
爆米花应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
Leif应助科研通管家采纳,获得10
20秒前
20秒前
20秒前
七七完成签到,获得积分10
22秒前
23秒前
24秒前
小夏咕噜发布了新的文献求助10
27秒前
27秒前
qinghong发布了新的文献求助10
27秒前
laber应助会科研的胡萝卜采纳,获得30
28秒前
sljsb完成签到,获得积分10
28秒前
qks完成签到 ,获得积分10
30秒前
32秒前
会科研的胡萝卜完成签到,获得积分10
33秒前
黑大侠完成签到 ,获得积分10
33秒前
sljsb发布了新的文献求助10
34秒前
科研通AI5应助qinghong采纳,获得10
35秒前
qin123完成签到 ,获得积分10
44秒前
庆123发布了新的文献求助20
44秒前
领导范儿应助跪求采纳,获得10
46秒前
七七发布了新的文献求助10
48秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779589
求助须知:如何正确求助?哪些是违规求助? 3325050
关于积分的说明 10221197
捐赠科研通 3040176
什么是DOI,文献DOI怎么找? 1668673
邀请新用户注册赠送积分活动 798729
科研通“疑难数据库(出版商)”最低求助积分说明 758535