A feature-weighted suppressed possibilistic fuzzy c-means clustering algorithm and its application on color image segmentation

特征(语言学) 聚类分析 模糊逻辑 模式识别(心理学) 模糊聚类 数学 火焰团簇 人工智能 算法 基质(化学分析) 计算机科学 数据挖掘 CURE数据聚类算法 语言学 哲学 复合材料 材料科学
作者
Haiyan Yu,Lerong Jiang,Jiulun Fan,Shuang Xie,Rong Lan
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:241: 122270-122270 被引量:21
标识
DOI:10.1016/j.eswa.2023.122270
摘要

The possibilistic fuzzy c-means clustering (PFCM) algorithm is a hybridization of possibilistic c-means clustering (PCM) and fuzzy c-means clustering (FCM) algorithms. However, there are two main problems in PFCM. One is that the Euclidean distance employed in PFCM always disregards the imbalance among sample features because it treats all features of data equally, which easily causes misclassification for feature-imbalanced multidimensional data. The other is that PFCM always produces significant center deviations and overlapping centers for multiclass datasets with strong noise injection, due to the difficulty of PFCM in the membership-weight parameter setting and the lack of between-class relationships in possibilistic memberships. Therefore, a feature-weighted suppressed possibilistic fuzzy c-means clustering (FW-S-PFCM) algorithm is presented by introducing a feature-weighted method and "suppressed competitive learning" strategy into the PFCM algorithm in this paper. First, the FW-S-PFCM algorithm introduces a feature-weight matrix into the objective function that can automatically assign feature-weight values to different features and different clusters according to the distribution of samples, thus overcoming the influence of feature imbalance and improving clustering effects for noisy multidimensional datasets. Second, combined with the feature-weight matrix, a "suppressed competitive learning" strategy is designed to resolve the center-overlapping problem in noisy multiclass dataset clustering. Specifically, partial crucial points of each class near the center are selected according to a cluster core generated by a cross-section of a threshold on the possibilistic membership surface. Third, their possibilistic memberships participate in the suppressed learning process to overcome the lack of between-class relationships. Last, a segmentation algorithm for noisy color images based on FW-S-PFCM is proposed combined with the feature-weight method and noise-identification ability of possibilistic memberships. Experiments on synthetic data, UCI data and color image segmentation demonstrate that the proposed FW-S-PFCM algorithm can overcome the partial center-overlapping problem and improve clustering performance on complex datasets with feature imbalance and strong noise injection. The proposed algorithm can also reduce the iteration number, sensitivity to membership weights, and initializations of PFCM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
歪比八不发布了新的文献求助10
刚刚
2秒前
3秒前
叶子发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
4秒前
一米阳光发布了新的文献求助10
6秒前
6秒前
6秒前
黑月光发布了新的文献求助10
7秒前
wangjue发布了新的文献求助10
8秒前
9秒前
9秒前
1x3完成签到,获得积分10
10秒前
10秒前
扥会发布了新的文献求助10
11秒前
郑啊哈发布了新的文献求助10
12秒前
所所应助小丁同学采纳,获得30
12秒前
如初完成签到,获得积分10
12秒前
ddd完成签到 ,获得积分10
12秒前
neymar发布了新的文献求助10
12秒前
博修发布了新的文献求助10
14秒前
hn完成签到,获得积分10
14秒前
wsff发布了新的文献求助10
15秒前
15秒前
杨思睿发布了新的文献求助10
17秒前
19秒前
清脆安南完成签到 ,获得积分10
19秒前
20秒前
顾矜应助公孙朝雨采纳,获得10
20秒前
赘婿应助时尚的梦曼采纳,获得10
20秒前
烟花应助neymar采纳,获得10
20秒前
刘宇翔发布了新的文献求助10
20秒前
FashionBoy应助过时的热狗采纳,获得10
21秒前
21秒前
共享精神应助Baboonium采纳,获得10
21秒前
CodeCraft应助liuyafei采纳,获得10
22秒前
23秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Materials for Green Hydrogen Production 2026-2036: Technologies, Players, Forecasts 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4052312
求助须知:如何正确求助?哪些是违规求助? 3590496
关于积分的说明 11410619
捐赠科研通 3316994
什么是DOI,文献DOI怎么找? 1824447
邀请新用户注册赠送积分活动 896133
科研通“疑难数据库(出版商)”最低求助积分说明 817261