An MRI-Based Radiomics Nomogram for Differentiation of Benign and Malignant Vertebral Compression Fracture

列线图 无线电技术 医学 接收机工作特性 逻辑回归 磁共振成像 放射科 肿瘤科 内科学
作者
Qianqian Feng,Shan Xu,Xiaoli Gong,Teng Wang,Xiaopeng He,Da-wei Liao,Fugang Han
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:31 (2): 605-616 被引量:4
标识
DOI:10.1016/j.acra.2023.07.011
摘要

Rationale and Objectives

This study aimed to develop and validate a magnetic resonance imaging (MRI)-based radiomics nomogram combining radiomics signatures and clinical factors to differentiate between benign and malignant vertebral compression fractures (VCFs).

Materials and Methods

A total of 189 patients with benign VCFs (n = 112) or malignant VCFs (n = 77) were divided into training (n = 133) and validation (n = 56) cohorts. Radiomics features were extracted from MRI T1-weighted images and short-TI inversion recovery images to develop the radiomics signature, and the Rad score was constructed using least absolute shrinkage and selection operator regression. Demographic and MRI morphological characteristics were assessed to build a clinical factor model using multivariate logistic regression analysis. A radiomics nomogram was constructed based on the Rad score and independent clinical factors. Finally, the diagnostic performance of the radiomics nomogram, clinical model, and radiomics signature was validated using receiver operating characteristic and decision curve analysis (DCA).

Results

Six features were used to build a combined radiomics model (combined-RS). Pedicle or posterior element involvement, paraspinal mass, and fluid sign were identified as the most important morphological factors for building the clinical factor model. The radiomics signature was superior to the clinical model in terms of the area under the curve (AUC), accuracy, and specificity. The radiomics nomogram integrating the combined-RS, pedicle or posterior element involvement, paraspinal mass, and fluid sign achieved favorable predictive efficacy, generating AUCs of 0.92 and 0.90 in the training and validation cohorts, respectively. The DCA indicated good clinical usefulness of the radiomics nomogram.

Conclusion

The MRI-based radiomics nomogram, combining the radiomics signature and clinical factors, showed favorable predictive efficacy for differentiating benign from malignant VCFs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
naruy发布了新的文献求助10
2秒前
lzl17o8完成签到,获得积分10
2秒前
LV完成签到 ,获得积分10
4秒前
lzl17o8发布了新的文献求助10
6秒前
dadad发布了新的文献求助10
8秒前
8秒前
9秒前
10秒前
gmchen完成签到,获得积分10
13秒前
英姑应助科研通管家采纳,获得10
14秒前
科研通AI5应助爱听歌笑寒采纳,获得10
14秒前
wonder123应助科研通管家采纳,获得10
14秒前
wuhzh发布了新的文献求助10
14秒前
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
14秒前
完美世界应助科研通管家采纳,获得10
14秒前
kai发布了新的文献求助10
14秒前
Zx完成签到 ,获得积分10
15秒前
18秒前
ZHU完成签到 ,获得积分10
19秒前
666发布了新的文献求助10
19秒前
仁爱柠檬完成签到,获得积分10
20秒前
Zhaoyuemeng完成签到 ,获得积分10
21秒前
卿莞尔完成签到 ,获得积分10
22秒前
22秒前
动漫大师发布了新的文献求助10
25秒前
顾矜应助xc采纳,获得10
29秒前
30秒前
鱼叮叮完成签到,获得积分10
35秒前
37秒前
小二郎应助study采纳,获得10
38秒前
乐乐应助笑笑采纳,获得10
40秒前
40秒前
Orange应助cff采纳,获得10
42秒前
44秒前
48秒前
49秒前
丸橙发布了新的文献求助30
50秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778761
求助须知:如何正确求助?哪些是违规求助? 3324313
关于积分的说明 10217843
捐赠科研通 3039436
什么是DOI,文献DOI怎么找? 1668081
邀请新用户注册赠送积分活动 798544
科研通“疑难数据库(出版商)”最低求助积分说明 758401