Graph Contrastive Learning with Generative Adversarial Network

计算机科学 鉴别器 人工智能 对抗制 图形 机器学习 特征学习 生成对抗网络 生成语法 理论计算机科学 深度学习 探测器 电信
作者
Cheng Wu,Chaokun Wang,Jingcao Xu,Ziyang Liu,Kai Zheng,Xiaowei Wang,Yang Song,Kun Gai
标识
DOI:10.1145/3580305.3599370
摘要

Graph Neural Networks (GNNs) have demonstrated promising results on exploiting node representations for many downstream tasks through supervised end-to-end training. To deal with the widespread label scarcity issue in real-world applications, Graph Contrastive Learning (GCL) is leveraged to train GNNs with limited or even no labels by maximizing the mutual information between nodes in its augmented views generated from the original graph. However, the distribution of graphs remains unconsidered in view generation, resulting in the ignorance of unseen edges in most existing literature, which is empirically shown to be able to improve GCL's performance in our experiments. To this end, we propose to incorporate graph generative adversarial networks (GANs) to learn the distribution of views for GCL, in order to i) automatically capture the characteristic of graphs for augmentations, and ii) jointly train the graph GAN model and the GCL model. Specifically, we present GACN, a novel Generative Adversarial Contrastive learning Network for graph representation learning. GACN develops a view generator and a view discriminator to generate augmented views automatically in an adversarial style. Then, GACN leverages these views to train a GNN encoder with two carefully designed self-supervised learning losses, including the graph contrastive loss and the Bayesian personalized ranking Loss. Furthermore, we design an optimization framework to train all GACN modules jointly. Extensive experiments on seven real-world datasets show that GACN is able to generate high-quality augmented views for GCL and is superior to twelve state-of-the-art baseline methods. Noticeably, our proposed GACN surprisingly discovers that the generated views in data augmentation finally conform to the well-known preferential attachment rule in online networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
屿风完成签到 ,获得积分10
1秒前
3秒前
果果完成签到,获得积分10
4秒前
WYN发布了新的文献求助10
4秒前
妮妮完成签到,获得积分10
4秒前
5秒前
lcw完成签到,获得积分10
5秒前
CYY发布了新的文献求助10
6秒前
哭泣以筠完成签到 ,获得积分10
8秒前
8秒前
9秒前
大仙儿完成签到 ,获得积分10
9秒前
Linda发布了新的文献求助10
10秒前
10秒前
muyun发布了新的文献求助10
11秒前
HEIKU应助科研通管家采纳,获得10
11秒前
HEIKU应助科研通管家采纳,获得10
11秒前
cdercder应助科研通管家采纳,获得60
11秒前
科目三应助科研通管家采纳,获得10
11秒前
无花果应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
orixero应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
11秒前
冯不可完成签到,获得积分10
12秒前
13秒前
Archy完成签到,获得积分10
15秒前
默默白开水完成签到 ,获得积分10
15秒前
Sun发布了新的文献求助10
15秒前
15秒前
黄诺发布了新的文献求助10
17秒前
席冥完成签到,获得积分10
17秒前
汉堡包应助小猫多鱼采纳,获得10
18秒前
重要的小刘完成签到,获得积分10
18秒前
wahaha发布了新的文献求助10
18秒前
Sun完成签到,获得积分10
20秒前
wxy完成签到,获得积分10
20秒前
羁绊完成签到,获得积分10
20秒前
lu完成签到,获得积分10
20秒前
lcw发布了新的文献求助10
20秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780337
求助须知:如何正确求助?哪些是违规求助? 3325661
关于积分的说明 10223791
捐赠科研通 3040806
什么是DOI,文献DOI怎么找? 1669006
邀请新用户注册赠送积分活动 798963
科研通“疑难数据库(出版商)”最低求助积分说明 758648