MRI‐Based Radiomics and Deep Learning in Biological Characteristics and Prognosis of Hepatocellular Carcinoma: Opportunities and Challenges

可解释性 人工智能 深度学习 无线电技术 机器学习 卷积神经网络 肝细胞癌 计算机科学 磁共振成像 医学 放射科 内科学
作者
Tianyi Xia,Ben Y. Zhao,Binrong Li,Lei Ying,Yang Song,Yuancheng Wang,Tianyu Tang,Shenghong Ju
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:59 (3): 767-783 被引量:41
标识
DOI:10.1002/jmri.28982
摘要

Hepatocellular carcinoma (HCC) is the fifth most common malignancy and the third leading cause of cancer‐related death worldwide. HCC exhibits strong inter‐tumor heterogeneity, with different biological characteristics closely associated with prognosis. In addition, patients with HCC often distribute at different stages and require diverse treatment options at each stage. Due to the variability in tumor sensitivity to different therapies, determining the optimal treatment approach can be challenging for clinicians prior to treatment. Artificial intelligence (AI) technology, including radiomics and deep learning approaches, has emerged as a unique opportunity to improve the spectrum of HCC clinical care by predicting biological characteristics and prognosis in the medical imaging field. The radiomics approach utilizes handcrafted features derived from specific mathematical formulas to construct various machine‐learning models for medical applications. In terms of the deep learning approach, convolutional neural network models are developed to achieve high classification performance based on automatic feature extraction from images. Magnetic resonance imaging offers the advantage of superior tissue resolution and functional information. This comprehensive evaluation plays a vital role in the accurate assessment and effective treatment planning for HCC patients. Recent studies have applied radiomics and deep learning approaches to develop AI‐enabled models to improve accuracy in predicting biological characteristics and prognosis, such as microvascular invasion and tumor recurrence. Although AI‐enabled models have demonstrated promising potential in HCC with biological characteristics and prognosis prediction with high performance, one of the biggest challenges, interpretability, has hindered their implementation in clinical practice. In the future, continued research is needed to improve the interpretability of AI‐enabled models, including aspects such as domain knowledge, novel algorithms, and multi‐dimension data sources. Overcoming these challenges would allow AI‐enabled models to significantly impact the care provided to HCC patients, ultimately leading to their deployment for clinical use. Level of Evidence 5 Technical Efficacy Stage 2
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研究生吗喽完成签到,获得积分10
刚刚
宫宛儿完成签到,获得积分10
1秒前
万能图书馆应助钢枪阿文采纳,获得10
1秒前
CodeCraft应助纯白采纳,获得10
2秒前
圈圈儿发布了新的文献求助10
2秒前
领导范儿应助科研通管家采纳,获得10
3秒前
科目三应助科研通管家采纳,获得10
3秒前
坦率沛蓝完成签到,获得积分20
3秒前
完美世界应助科研通管家采纳,获得10
3秒前
bfbdfbdf应助科研通管家采纳,获得10
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
keyan123应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
斯文败类应助科研通管家采纳,获得10
3秒前
3秒前
研友_VZG7GZ应助科研通管家采纳,获得10
3秒前
4秒前
4秒前
咕咕发布了新的文献求助10
5秒前
bear发布了新的文献求助10
5秒前
5秒前
LiushengCUI完成签到,获得积分10
6秒前
小怪兽发布了新的文献求助20
7秒前
toxin37完成签到 ,获得积分10
7秒前
一只大老蹬完成签到,获得积分20
8秒前
8秒前
8秒前
9秒前
9秒前
9秒前
10秒前
快乐的忆山完成签到,获得积分10
10秒前
海猫食堂完成签到,获得积分10
10秒前
kento完成签到,获得积分0
11秒前
11秒前
山吱小猪完成签到,获得积分10
11秒前
11秒前
专注的语堂完成签到,获得积分10
11秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 1000
Global Eyelash Assessment scale (GEA) 1000
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4049865
求助须知:如何正确求助?哪些是违规求助? 3587736
关于积分的说明 11400813
捐赠科研通 3314203
什么是DOI,文献DOI怎么找? 1823161
邀请新用户注册赠送积分活动 895103
科研通“疑难数据库(出版商)”最低求助积分说明 816692