MRI‐Based Radiomics and Deep Learning in Biological Characteristics and Prognosis of Hepatocellular Carcinoma: Opportunities and Challenges

可解释性 人工智能 深度学习 无线电技术 机器学习 卷积神经网络 肝细胞癌 计算机科学 磁共振成像 医学 放射科 内科学
作者
Tianyi Xia,Ben Y. Zhao,Binrong Li,Lei Ying,Yang Song,Yuancheng Wang,Tianyu Tang,Shenghong Ju
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:59 (3): 767-783 被引量:28
标识
DOI:10.1002/jmri.28982
摘要

Hepatocellular carcinoma (HCC) is the fifth most common malignancy and the third leading cause of cancer‐related death worldwide. HCC exhibits strong inter‐tumor heterogeneity, with different biological characteristics closely associated with prognosis. In addition, patients with HCC often distribute at different stages and require diverse treatment options at each stage. Due to the variability in tumor sensitivity to different therapies, determining the optimal treatment approach can be challenging for clinicians prior to treatment. Artificial intelligence (AI) technology, including radiomics and deep learning approaches, has emerged as a unique opportunity to improve the spectrum of HCC clinical care by predicting biological characteristics and prognosis in the medical imaging field. The radiomics approach utilizes handcrafted features derived from specific mathematical formulas to construct various machine‐learning models for medical applications. In terms of the deep learning approach, convolutional neural network models are developed to achieve high classification performance based on automatic feature extraction from images. Magnetic resonance imaging offers the advantage of superior tissue resolution and functional information. This comprehensive evaluation plays a vital role in the accurate assessment and effective treatment planning for HCC patients. Recent studies have applied radiomics and deep learning approaches to develop AI‐enabled models to improve accuracy in predicting biological characteristics and prognosis, such as microvascular invasion and tumor recurrence. Although AI‐enabled models have demonstrated promising potential in HCC with biological characteristics and prognosis prediction with high performance, one of the biggest challenges, interpretability, has hindered their implementation in clinical practice. In the future, continued research is needed to improve the interpretability of AI‐enabled models, including aspects such as domain knowledge, novel algorithms, and multi‐dimension data sources. Overcoming these challenges would allow AI‐enabled models to significantly impact the care provided to HCC patients, ultimately leading to their deployment for clinical use. Level of Evidence 5 Technical Efficacy Stage 2
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
司连喜发布了新的文献求助10
刚刚
明明发布了新的文献求助10
刚刚
sdjtxdy完成签到,获得积分10
刚刚
Beginner发布了新的文献求助10
3秒前
4秒前
mtt完成签到 ,获得积分10
5秒前
wanci应助张靖超采纳,获得10
5秒前
8秒前
8秒前
aaaaa小柴完成签到,获得积分10
10秒前
天真的千柔完成签到,获得积分20
10秒前
顾矜应助科研通管家采纳,获得10
11秒前
情怀应助科研通管家采纳,获得10
11秒前
现代代芹应助科研通管家采纳,获得10
12秒前
领导范儿应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
cyz-kyt应助科研通管家采纳,获得10
12秒前
pluto应助科研通管家采纳,获得10
12秒前
JamesPei应助科研通管家采纳,获得10
12秒前
Owen应助科研通管家采纳,获得10
12秒前
12秒前
华仔应助科研通管家采纳,获得10
12秒前
13秒前
13秒前
13秒前
隐形曼青应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
yx发布了新的文献求助10
13秒前
勤恳凤发布了新的文献求助10
13秒前
李爱国应助超帅的萤采纳,获得10
13秒前
tingting发布了新的文献求助10
13秒前
14秒前
吴彦祖发布了新的文献求助10
15秒前
万能图书馆应助1325850238采纳,获得10
16秒前
科研通AI2S应助博修采纳,获得10
17秒前
17秒前
小蘑菇应助一只呆呆采纳,获得10
18秒前
孟莎发布了新的文献求助20
18秒前
59完成签到,获得积分10
19秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
非光滑分析与控制理论 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Routledge Handbook of Language and Intercultural Communication 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3826719
求助须知:如何正确求助?哪些是违规求助? 3369009
关于积分的说明 10453805
捐赠科研通 3088598
什么是DOI,文献DOI怎么找? 1699232
邀请新用户注册赠送积分活动 817281
科研通“疑难数据库(出版商)”最低求助积分说明 770157