亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Non-destructive Detection of Fatty Acid Content of Camellia Seed Based on Hyperspectral

山茶花 高光谱成像 均方误差 数学 油茶 平滑的 生物系统 山茶 脂肪酸 相关系数 规范化(社会学) 偏最小二乘回归 植物 计算机科学 化学 统计 人工智能 生物 社会学 有机化学 人类学
作者
Xiwen Yang,Ping Jiang,Yahui Luo,Yixin Shi
出处
期刊:Journal of Oleo Science [Japan Oil Chemists' Society]
卷期号:72 (1): 69-77 被引量:4
标识
DOI:10.5650/jos.ess22139
摘要

As a unique traditional vegetable oil in China, camellia seed oil has very high edible value. Camellia seed kernel is mainly composed of fatty acids, which not only determines the oil yield of camellia seed, but also exert an important impact on the storage performance of camellia seed. In order to quickly and accurately determine the fatty acid content of camellia seed, this paper took camellia seed as the research object, used hyperspectral technology to determine the fatty acid content of camellia seed, and establishes a spectral model. 8 pretreatment methods, such as Savitzky-Golay smoothing, normalization, baseline correction, multivariate scattering correction, standard normal variable transformation, detrending algorithm, first derivative and second derivative, were adopted in this paper. The spectral prediction model of fatty acid content in camellia seed was established by combining 4 modeling methods: principal components regression (PCR), partial least square regression (PLSR), back propagation neural network (BP), radial basis function neural network (RBF). The optimal prediction model was selected by comparing the coefficient of determination (R2) and root mean square error (RMSE) of various models. The results showed that the spectral sensitive bands with high correlation coefficients (r) were 410-420 nm, 450-460 nm, 490-510 nm, 545-580 nm, 845-870 nm and 905-925 nm, respectively. The r obtained by MSC pretreatment of spectral data was the largest. The data obtained by 8 different pretreatment methods combined with RBF neural network model was the best, in which the average value of coefficient of determination (RC2) in the calibration set was 0.8654, and the root mean square error of calibration (RMSEC) was 0.0777; the average value of coefficient of determination (RP2) and root mean square error of prediction (RMSEP) in the prediction set model were 0.8437 and 0.0827, respectively. It could be seen that the best accuracy could be achieved by MSC pretreatment combined with RBF neural network modeling. This paper can provide reference for rapid nondestructive detection of fatty acid content in camellia seed by hyperspectral technology.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
11秒前
muhum完成签到 ,获得积分10
17秒前
量子星尘发布了新的文献求助10
34秒前
39秒前
莫茹完成签到 ,获得积分10
42秒前
44秒前
科研通AI2S应助细腻的宫二采纳,获得10
51秒前
54秒前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
钟基基完成签到 ,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
朴素的山蝶完成签到 ,获得积分10
1分钟前
xiaokang123应助科研通管家采纳,获得10
1分钟前
xiaokang123应助科研通管家采纳,获得10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
Jasper应助科研通管家采纳,获得30
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
xiaokang123应助科研通管家采纳,获得10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
雪白元风完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
在水一方应助110ne采纳,获得10
2分钟前
善良胡萝卜完成签到,获得积分10
2分钟前
孙Tuan完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
Camille发布了新的文献求助10
2分钟前
3分钟前
上官若男应助善良胡萝卜采纳,获得10
3分钟前
LIUDEHUA发布了新的文献求助10
3分钟前
超级微笑完成签到 ,获得积分10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
3分钟前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
The Oxford Encyclopedia of the History of Modern Psychology 2000
Synthesis of 21-Thioalkanoic Acids of Corticosteroids 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Applied Survey Data Analysis (第三版, 2025) 850
Structural Equation Modeling of Multiple Rater Data 700
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3885751
求助须知:如何正确求助?哪些是违规求助? 3427844
关于积分的说明 10757066
捐赠科研通 3152717
什么是DOI,文献DOI怎么找? 1740558
邀请新用户注册赠送积分活动 840289
科研通“疑难数据库(出版商)”最低求助积分说明 785283