医学诊断
断层(地质)
计算机科学
过程(计算)
人工智能
自然语言处理
机器学习
程序设计语言
医学
病理
地质学
地震学
作者
Deyang Wu,Jinsong Zhao
出处
期刊:Computer-aided chemical engineering
日期:2022-01-01
卷期号:: 1537-1542
被引量:4
标识
DOI:10.1016/b978-0-323-85159-6.50256-6
摘要
CNN-based models for fault diagnosis have achieved high prediction accuracy, but the lack of explainability makes them hardly be understood by humans. In this paper, a technique used to produce visual explanations for CNN has been introduced to a CNN-based fault diagnosis model, DCNN, to make it more transparent and understandable. Experiments on Tennessee Eastman process showed variables that DCNN pays more attention to when diagnosing faults, which makes the decision making process of DCNN more explainable and understandable.
科研通智能强力驱动
Strongly Powered by AbleSci AI