已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Context-based local-global fusion network for 3D point cloud classification and segmentation

计算机科学 点云 分割 背景(考古学) 融合 人工智能 点(几何) 云计算 模式识别(心理学) 数据挖掘 数学 地理 语言学 哲学 几何学 考古 操作系统
作者
Junwei Wu,Mingjie Sun,Chenru Jiang,Jiejie Liu,Jeremy S. Smith,Quan Zhang
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:251: 124023-124023 被引量:12
标识
DOI:10.1016/j.eswa.2024.124023
摘要

3D point clouds have gained much research attention because of their ability to represent the spatial information of real-world environments in a detailed manner. Despite recent progress in point cloud processing with deep neural networks, most of them either implement sophisticated local feature aggregation methods or imitate 2D convolution operations in the range of K nearest neighbors with limited local context information. These methods may struggle to distinguish between similar geometric shapes within the local region of K nearest neighbors, such as doors and walls. To address this issue, we propose a novel local–global fusion network that captures the diverse local geometric shapes with global structure information. The proposed local–global fusion network comprises two main modules. Firstly, we have developed an effective approach for local context learning using incremental dilated KNN (IDKNN) as the neighbor selecting mechanism to enlarge the receptive field and incorporate more reliable points for local geometric shape learning. Secondly, a three-direction region-wise spatial attention (TRSA) algorithm has been developed to explore the global contextual dependencies. For global context learning, we first split the entire 3D space into regions with equal numbers of points, and, then, intra-region context features are extracted to learn the inter-region relations from three orthogonal directions, taking global structural knowledge into account. By fusing the local context information and global contextual dependencies, we establish a Local-Global Fusion Network, end-to-end framework, called LGFNet. Extensive experimental results on several benchmark datasets clearly demonstrate our approach can achieve state-of-the-art (SOTA) performance on point cloud classification, part segmentation, and indoor semantic segmentation. In addition, TRSA and IKDNN can be easily used in a plug-and-play fashion with various existing SOTA networks to substantially improve their performance. Our code is available at https://github.com/jasonwjw/IDKNN
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
户户得振完成签到,获得积分10
刚刚
凤凰山发布了新的文献求助10
1秒前
224完成签到 ,获得积分10
1秒前
1秒前
王军鹏完成签到,获得积分10
1秒前
冷酷夏真完成签到 ,获得积分10
2秒前
岂曰无衣完成签到 ,获得积分10
4秒前
5秒前
Owen应助从容的追命采纳,获得10
7秒前
X+1发布了新的文献求助30
7秒前
量子星尘发布了新的文献求助10
12秒前
dominic12361完成签到 ,获得积分10
14秒前
14秒前
在水一方应助太叔十三采纳,获得10
17秒前
天乙发布了新的文献求助30
17秒前
万能图书馆应助心尘采纳,获得10
18秒前
充电宝应助羞涩的听莲采纳,获得10
19秒前
xzy998应助X+1采纳,获得10
21秒前
23秒前
机灵柚子应助顺利的寒云采纳,获得20
26秒前
机灵柚子应助LONG采纳,获得150
30秒前
31秒前
34秒前
漂漂亮亮大番薯完成签到,获得积分10
34秒前
丁又菡完成签到,获得积分10
36秒前
哈哈完成签到,获得积分10
36秒前
尼莫发布了新的文献求助10
37秒前
太叔十三发布了新的文献求助10
38秒前
Jasper应助lll采纳,获得10
38秒前
ding应助凤凰山采纳,获得10
41秒前
清璃完成签到 ,获得积分10
42秒前
44秒前
45秒前
45秒前
传奇3应助悦耳凝丹采纳,获得10
47秒前
JOJO发布了新的文献求助10
49秒前
Hello应助bobo采纳,获得10
50秒前
50秒前
真的OK发布了新的文献求助10
50秒前
53秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 3000
Bulletin de la Societe Chimique de France 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4278830
求助须知:如何正确求助?哪些是违规求助? 3807366
关于积分的说明 11928300
捐赠科研通 3454582
什么是DOI,文献DOI怎么找? 1894404
邀请新用户注册赠送积分活动 944114
科研通“疑难数据库(出版商)”最低求助积分说明 847920