Time series data recovery in SHM of large-scale bridges: Leveraging GAN and Bi-LSTM networks

系列(地层学) 结构健康监测 比例(比率) 计算机科学 时间序列 数据挖掘 材料科学 电子工程 结构工程 工程类 物理 地质学 机器学习 量子力学 古生物学
作者
Thanh Bui-Tien,Tuyen Vu Quang,Lan Nguyen-Ngoc,H. Tran-Ngoc
出处
期刊:Structures [Elsevier BV]
卷期号:63: 106368-106368 被引量:3
标识
DOI:10.1016/j.istruc.2024.106368
摘要

This paper proposes the utilization of a Bidirectional Long Short-Term Memory (Bi-LSTM) network and a Generative Adversarial Network (GAN) model, to recover measured time-series data from Structural Health Monitoring (SHM) systems. In civil engineering, time-series data plays a crucial role in SHM systems. However, unforeseen incidents, such as equipment malfunctions, flawed data collection procedures, or human errors may result in missing data or adversely affect the accuracy of the data collected. To address this challenge, researchers have recently introduced various methods for time series data imputation. Nevertheless, it is evident that many existing approaches are hindered by inherent limitations: (1) neglecting bidirectional temporal correlations; (2) failing to model correlations among variables; (3) generating data that inadequately reflects the distribution of the original dataset, leading to inaccuracies in the recovered data. To overcome these limitations, this study proposes the utilization of Bi-LSTM-GAN for recovering time-series data in the context of SHM. Bi-LSTM demonstrates remarkable proficiency in capturing bidirectional temporal and cross-variable correlations, while GAN is utilized to precisely acquire the distribution of the original data. Additionally, Bi-LSTM significantly bolsters the capacity for long-term data recovery in contrast to a conventional Recurrent Neural Network (RNN). To evaluate the efficacy of this approach, we employ two real-world models: a laboratory-based cable-stayed bridge and an actual three-span continuous bridge. The obtained results compellingly demonstrate that Bi-LSTM-GAN not only achieves data restoration effectively but also yields superior accuracy when compared to conventional GAN model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dreamer发布了新的文献求助10
1秒前
老实芭蕉应助鱼与渔采纳,获得10
1秒前
在水一方应助xxx采纳,获得10
1秒前
蝎y完成签到,获得积分10
2秒前
kobe发布了新的文献求助10
2秒前
苹果王子6699完成签到 ,获得积分10
3秒前
Lucas应助Catalysis123采纳,获得10
3秒前
JamesPei应助qq采纳,获得10
3秒前
隐形曼青应助mushini采纳,获得10
3秒前
4秒前
喜悦又菡发布了新的文献求助10
4秒前
4秒前
怕孤单的晓亦完成签到,获得积分20
5秒前
斯文败类应助Arlene采纳,获得10
5秒前
univ发布了新的文献求助10
5秒前
朱艳珍完成签到,获得积分10
5秒前
EliotFang完成签到,获得积分10
6秒前
6秒前
9秒前
10秒前
10秒前
淡定雁开完成签到,获得积分10
11秒前
小马发布了新的文献求助10
11秒前
Proddy发布了新的文献求助10
11秒前
12秒前
djejje发布了新的文献求助10
12秒前
mushini发布了新的文献求助10
14秒前
轩辕剑身完成签到,获得积分0
14秒前
14秒前
泠漓发布了新的文献求助10
14秒前
15秒前
15秒前
整齐枫叶完成签到 ,获得积分10
15秒前
16秒前
NexusExplorer应助揍个大西瓜采纳,获得10
16秒前
科研通AI6应助喜悦又菡采纳,获得10
16秒前
17秒前
权青曼发布了新的文献求助10
18秒前
orixero应助嘿嘿嘿采纳,获得10
18秒前
踏实口红完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5194361
求助须知:如何正确求助?哪些是违规求助? 4376657
关于积分的说明 13629793
捐赠科研通 4231614
什么是DOI,文献DOI怎么找? 2321134
邀请新用户注册赠送积分活动 1319292
关于科研通互助平台的介绍 1269676