Machine learning-based prediction of the post-thrombotic syndrome: Model development and validation study

医学 血栓后综合征 队列 逻辑回归 梯度升压 接收机工作特性 决策树 深静脉 预测建模 人工智能 机器学习 血栓形成 内科学 计算机科学 随机森林
作者
Tao Yu,Runnan Shen,Guochang You,Lin Li,Shimao Kang,Xiaoyan Wang,Jiatang Xu,Dongxi Zhu,Zuqi Xia,Junmeng Zheng,Kai Huang
出处
期刊:Frontiers in Cardiovascular Medicine [Frontiers Media]
卷期号:9 被引量:3
标识
DOI:10.3389/fcvm.2022.990788
摘要

Background Prevention is highly involved in reducing the incidence of post-thrombotic syndrome (PTS). We aimed to develop accurate models with machine learning (ML) algorithms to predict whether PTS would occur within 24 months. Materials and methods The clinical data used for model building were obtained from the Acute Venous Thrombosis: Thrombus Removal with Adjunctive Catheter-Directed Thrombolysis study and the external validation cohort was acquired from the Sun Yat-sen Memorial Hospital in China. The main outcome was defined as the occurrence of PTS events (Villalta score ≥5). Twenty-three clinical variables were included, and four ML algorithms were applied to build the models. For discrimination and calibration, F scores were used to evaluate the prediction ability of the models. The external validation cohort was divided into ten groups based on the risk estimate deciles to identify the hazard threshold. Results In total, 555 patients with deep vein thrombosis (DVT) were included to build models using ML algorithms, and the models were further validated in a Chinese cohort comprising 117 patients. When predicting PTS within 2 years after acute DVT, logistic regression based on gradient descent and L1 regularization got the highest area under the curve (AUC) of 0.83 (95% CI:0.76–0.89) in external validation. When considering model performance in both the derivation and external validation cohorts, the eXtreme gradient boosting and gradient boosting decision tree models had similar results and presented better stability and generalization. The external validation cohort was divided into low, intermediate, and high-risk groups with the prediction probability of 0.3 and 0.4 as critical points. Conclusion Machine learning models built for PTS had accurate prediction ability and stable generalization, which can further facilitate clinical decision-making, with potentially important implications for selecting patients who will benefit from endovascular surgery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
希望天下0贩的0应助韩hqf采纳,获得10
1秒前
NICE完成签到,获得积分10
1秒前
2秒前
2秒前
撒玉发布了新的文献求助10
3秒前
某某完成签到,获得积分10
3秒前
4秒前
万能图书馆应助猪猪hero采纳,获得10
4秒前
5秒前
GoldWind完成签到,获得积分10
6秒前
活泼的飞双完成签到,获得积分10
7秒前
北漂盲流完成签到,获得积分10
7秒前
科研通AI5应助阳光奎采纳,获得10
7秒前
LV发布了新的文献求助30
7秒前
7秒前
kkkkkoi完成签到,获得积分10
7秒前
8秒前
学术趴菜发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
科研的POWER完成签到,获得积分10
8秒前
liaohua完成签到,获得积分10
9秒前
小蘑菇应助清脆松采纳,获得10
10秒前
乐乐应助撒玉采纳,获得10
10秒前
10秒前
陌上桑完成签到,获得积分10
11秒前
11秒前
静静完成签到 ,获得积分10
11秒前
m木宁木蒙应助艾云欣采纳,获得10
11秒前
12秒前
tay完成签到,获得积分10
12秒前
12秒前
13秒前
敏感初露发布了新的文献求助10
13秒前
我是老大应助英俊小美采纳,获得10
13秒前
guyu完成签到,获得积分10
13秒前
luiii发布了新的文献求助10
13秒前
14秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789038
求助须知:如何正确求助?哪些是违规求助? 3334180
关于积分的说明 10267495
捐赠科研通 3050372
什么是DOI,文献DOI怎么找? 1674003
邀请新用户注册赠送积分活动 802379
科研通“疑难数据库(出版商)”最低求助积分说明 760570