Micromechanics-based constitutive modeling of hard-magnetic soft materials

微观力学 超弹性材料 材料科学 弹性体 变形(气象学) 本构方程 固体力学 机械 材料性能 介观物理学 复合材料 有限元法 结构工程 物理 工程类 凝聚态物理 复合数
作者
P. Ramesh Narayanan,R. Pramanik,A. Arockiarajan
出处
期刊:Mechanics of Materials [Elsevier BV]
卷期号:184: 104722-104722 被引量:3
标识
DOI:10.1016/j.mechmat.2023.104722
摘要

Soft materials exhibit large deformation material nonlinearity when stretched and possess enhanced elongation-at-break strain prior to rupture. As a result, these materials can cater to several state-of-the-art biomedical and microfluidic applications that require cross-domain energy transduction. Furthermore, they are often impregnated with external multi-functional filler materials (e.g., hard-magnetic particles) to result in hard-magnetic soft materials (hMSM). This gives rise to an inherent complexity owing to the multi-physics coupling due to magnetics and solid dynamics (along with geometric and material nonlinearities), which demands a rigorous magneto-mechanical model for a thorough understanding of their large deformation mechanical behavior under magneto-mechanical loads. It is also mandatory to understand their rate-dependent, hyperelastic, and flow behavior that is omnipresent during their deformation process. This paper focuses on the development of a novel thermodynamically-consistent micromechanics-based constitutive model that incorporates all these attributes using the finite deformation theory. A statistical mechanics-based approach has been undertaken to model the mechanics of the elastomer matrix. The plastic behavior due to the elastomer and the dispersed magnetic phases has been further accounted using a double-yield function with a micromechanical approach. The developed model shows a good agreement for a wide range of hMSM subjected to a variety of complex loading conditions. Finally, a parametric study has been carried out to provide physical insights into the different model parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小钱完成签到,获得积分10
刚刚
优美银耳汤完成签到 ,获得积分10
1秒前
1秒前
pluto应助氢氧化钠Li采纳,获得20
7秒前
奋斗的蜗牛应助千小千采纳,获得20
9秒前
科研通AI5应助Tera采纳,获得10
10秒前
11秒前
Owen应助英勇的寒蕾采纳,获得10
12秒前
小王同学发布了新的文献求助10
15秒前
18秒前
mmmz关注了科研通微信公众号
19秒前
holy完成签到,获得积分10
19秒前
liningyao完成签到,获得积分10
20秒前
甜美三娘发布了新的文献求助10
21秒前
24秒前
酷波er应助Sephirex采纳,获得10
24秒前
TALE完成签到,获得积分10
27秒前
28秒前
Tera发布了新的文献求助10
33秒前
小菜完成签到 ,获得积分10
35秒前
36秒前
fan完成签到 ,获得积分10
38秒前
zulpikar完成签到 ,获得积分10
39秒前
无情的笑萍完成签到,获得积分10
40秒前
mmmz完成签到,获得积分10
41秒前
41秒前
42秒前
Tera完成签到,获得积分10
44秒前
三七二一完成签到,获得积分10
44秒前
45秒前
蒲蒲完成签到 ,获得积分10
46秒前
冰魂应助lzq采纳,获得10
47秒前
52秒前
Sephirex完成签到,获得积分10
52秒前
54秒前
54秒前
学术完成签到 ,获得积分10
54秒前
Yi发布了新的文献求助10
56秒前
56秒前
大个应助Ryan采纳,获得10
57秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782226
求助须知:如何正确求助?哪些是违规求助? 3327628
关于积分的说明 10232718
捐赠科研通 3042558
什么是DOI,文献DOI怎么找? 1670066
邀请新用户注册赠送积分活动 799617
科研通“疑难数据库(出版商)”最低求助积分说明 758854