Report Generation on Chest X-rays using Deep Learning

计算机科学 人工智能 深度学习
作者
M. Ashok Kumar,Suresh Ganta,Gopiswara Rao Chinni
标识
DOI:10.1109/iciccs56967.2023.10142637
摘要

Nowadays the chest X-ray is the most frequently used diagnostic procedure. A radiology specialist can understand the detailed information contained in an X-ray of a chest regarding the human body's heart and lungs. Specialists in radiology are typically tasked with reviewing chest X-rays so that patients can get the right treatment. Because a doctor may see more than 100 X-rays each day in larger cities and thorough inspection necessitates skilled doctors, obtaining a thorough medical diagnosis from such Xrays is frequently laborious and time-consuming. This project's goal is to demonstrate deep learning techniques for autonomously extracting clinical data from X-ray images. Deep learning approaches have been combined with algorithms to tackle this difficult challenge, with promising performance. If such reports can be generated automatically by a trained model, a lot of time and effort can be saved. In this project, some deep learning techniques such as an encoder and decoder and a pre-trained chexnet model have been used. The task of obtaining visual features from an x-ray is performed by the chexnet model which is passed to an encoder which then sends its result to a decoder these types of techniques are mainly used in image captioning which aims to produce text from an image Here, LSTM is employed as the encoder while GRU and Bi GRU is used as the decoder. Both of these are recurrent neural networks. The generated text report is evaluated by the BLEU score.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
haohao66发布了新的文献求助10
刚刚
开到荼靡完成签到,获得积分10
刚刚
1秒前
酷波er应助香蕉梨愁采纳,获得10
1秒前
QMCL完成签到,获得积分0
2秒前
充电宝应助饱满的靖易采纳,获得10
2秒前
4秒前
魏魏完成签到,获得积分10
4秒前
幼萱完成签到,获得积分10
6秒前
8秒前
8秒前
8秒前
精明凡双应助厌学不厌校采纳,获得10
8秒前
烟花应助YUYUYU采纳,获得10
9秒前
Owen应助谢韵宁采纳,获得10
9秒前
Liu发布了新的文献求助10
9秒前
9秒前
不想干活应助chojo采纳,获得10
9秒前
充电宝应助孤巷的猫采纳,获得10
10秒前
11秒前
、、、发布了新的文献求助10
11秒前
12秒前
13秒前
一叶扁舟完成签到,获得积分10
13秒前
13秒前
KE发布了新的文献求助10
13秒前
13秒前
大力沛萍发布了新的文献求助10
14秒前
zyk发布了新的文献求助10
14秒前
zhujun完成签到,获得积分10
14秒前
15秒前
16秒前
橙子快跑完成签到,获得积分10
16秒前
Jasper应助shuangshuang采纳,获得10
16秒前
李健应助隋盈春采纳,获得10
16秒前
believe杨发布了新的文献求助10
17秒前
、、、完成签到,获得积分10
17秒前
LuckyJ_Jia发布了新的文献求助10
17秒前
一叶扁舟发布了新的文献求助10
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4479616
求助须知:如何正确求助?哪些是违规求助? 3936982
关于积分的说明 12213490
捐赠科研通 3591701
什么是DOI,文献DOI怎么找? 1975162
邀请新用户注册赠送积分活动 1012407
科研通“疑难数据库(出版商)”最低求助积分说明 905660