Moth image segmentation based on improved Unet

人工智能 计算机科学 模式识别(心理学) 棱锥(几何) 分割 卷积神经网络 图像分割 卷积(计算机科学) 特征(语言学) 人工神经网络 数学 几何学 语言学 哲学
作者
Qilin Sun,Ruirui Zhang,Liping Chen,Meixiang Chen,Rong Wang,Chunjiang Zhao
标识
DOI:10.1117/12.2657219
摘要

Moths are pests that pose a major threat to food production in China, and the monitoring and prevention of moth infestation is of great significance. To address the problems of a high diversity of moths with minor differences and difficult identification, a semantic segmentation network based on depthwise separable convolution, attention mechanism, pyramid pooling—Depthwise Squeeze-and-Excitation Pyramid network (DSEPNet)—was proposed. The network to extract texture features and wing edge information of moths was enhanced based on the optimization of the model of channel attention mechanism on UNet. The computational speed of the model was increased and the number of parameters of the model was reduced based on the improvement in depthwise separable convolution. A pyramid pooling module was added between the encoder and decoder so that the model could input images of an arbitrary size, while enhancing its ability to learn feature information of different dimensions. DSEPNet was evaluated by ablation and contrast experiments. Compared with UNet, the accuracy, mean intersection over union (mIoU), and F1-Score of DSEPNet were improved by 2.04%, 9.14%, and 4.08%, respectively. Based on the moth dataset, compared with R2AU-Net, the mIoU of DSEPNet was improved by 3.04%. To verify the generalization of the model, comparison experiments were done on the Pascal VOC 2012 dataset. The mIoU of DSEPNet was improved by 0.51% compared with PSPNet and by 0.18% compared with DeepLabv3. Meanwhile, an automatic annotation algorithm for data sets was proposed to solve the time-consuming and laborious process of manual annotation, which can automatically generate semantic segmentation annotation files. DSEPNet can be installed on moth traps to identify moths and monitor the number and species of moths in the area.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在写了发布了新的文献求助10
1秒前
初雪完成签到,获得积分10
2秒前
隐形曼青应助swallow采纳,获得10
2秒前
张嘴完成签到,获得积分20
4秒前
lyw完成签到 ,获得积分10
10秒前
13秒前
乐乐应助欧阳正义采纳,获得30
14秒前
16秒前
犇骉完成签到,获得积分10
17秒前
19秒前
19秒前
swallow发布了新的文献求助10
20秒前
21秒前
21秒前
Robby应助我先睡了采纳,获得30
22秒前
可可萝oxo发布了新的文献求助10
22秒前
26秒前
丁元英完成签到,获得积分10
27秒前
飞飞完成签到,获得积分10
28秒前
受伤灵薇完成签到,获得积分10
28秒前
Orange应助优美机器猫采纳,获得30
28秒前
李伟完成签到,获得积分10
29秒前
30秒前
30秒前
ZJING9完成签到,获得积分10
31秒前
善良的背包完成签到,获得积分10
32秒前
fangchenxi发布了新的文献求助20
32秒前
o2ptf6发布了新的文献求助10
34秒前
好运滚滚来完成签到 ,获得积分10
35秒前
LDQ发布了新的文献求助10
38秒前
打打应助Ricky采纳,获得10
39秒前
天天快乐应助12234hao采纳,获得10
39秒前
充电宝应助ll采纳,获得10
40秒前
40秒前
科研通AI5应助念姬采纳,获得10
41秒前
42秒前
CR7完成签到,获得积分0
43秒前
o2ptf6完成签到,获得积分10
44秒前
张嘴发布了新的文献求助10
44秒前
lyz完成签到,获得积分10
45秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966882
求助须知:如何正确求助?哪些是违规求助? 3512358
关于积分的说明 11162784
捐赠科研通 3247203
什么是DOI,文献DOI怎么找? 1793752
邀请新用户注册赠送积分活动 874602
科研通“疑难数据库(出版商)”最低求助积分说明 804432