Moth image segmentation based on improved Unet

人工智能 计算机科学 模式识别(心理学) 棱锥(几何) 分割 卷积神经网络 图像分割 卷积(计算机科学) 特征(语言学) 人工神经网络 数学 语言学 哲学 几何学
作者
Qilin Sun,Ruirui Zhang,Liping Chen,Meixiang Chen,Rong Wang,Chunjiang Zhao
标识
DOI:10.1117/12.2657219
摘要

Moths are pests that pose a major threat to food production in China, and the monitoring and prevention of moth infestation is of great significance. To address the problems of a high diversity of moths with minor differences and difficult identification, a semantic segmentation network based on depthwise separable convolution, attention mechanism, pyramid pooling—Depthwise Squeeze-and-Excitation Pyramid network (DSEPNet)—was proposed. The network to extract texture features and wing edge information of moths was enhanced based on the optimization of the model of channel attention mechanism on UNet. The computational speed of the model was increased and the number of parameters of the model was reduced based on the improvement in depthwise separable convolution. A pyramid pooling module was added between the encoder and decoder so that the model could input images of an arbitrary size, while enhancing its ability to learn feature information of different dimensions. DSEPNet was evaluated by ablation and contrast experiments. Compared with UNet, the accuracy, mean intersection over union (mIoU), and F1-Score of DSEPNet were improved by 2.04%, 9.14%, and 4.08%, respectively. Based on the moth dataset, compared with R2AU-Net, the mIoU of DSEPNet was improved by 3.04%. To verify the generalization of the model, comparison experiments were done on the Pascal VOC 2012 dataset. The mIoU of DSEPNet was improved by 0.51% compared with PSPNet and by 0.18% compared with DeepLabv3. Meanwhile, an automatic annotation algorithm for data sets was proposed to solve the time-consuming and laborious process of manual annotation, which can automatically generate semantic segmentation annotation files. DSEPNet can be installed on moth traps to identify moths and monitor the number and species of moths in the area.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
虚幻初之发布了新的文献求助10
1秒前
2秒前
2秒前
周心雨发布了新的文献求助10
3秒前
moshi发布了新的文献求助10
3秒前
4秒前
明亮的书双完成签到,获得积分10
4秒前
QIN完成签到,获得积分10
4秒前
气味发布了新的文献求助10
4秒前
hakunamatata完成签到 ,获得积分10
4秒前
5秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
Lucas应助科研通管家采纳,获得30
6秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
英俊的铭应助科研通管家采纳,获得10
6秒前
隐形曼青应助科研通管家采纳,获得10
6秒前
枫叶应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
SciGPT应助虚幻初之采纳,获得10
8秒前
zhl发布了新的文献求助10
8秒前
Leeny发布了新的文献求助10
9秒前
9秒前
Natsu完成签到,获得积分10
9秒前
第八大洋完成签到,获得积分10
10秒前
研友_VZG7GZ应助轩少的采纳,获得10
10秒前
慕青应助Annabelle采纳,获得10
10秒前
123完成签到,获得积分10
11秒前
11秒前
搜集达人应助豆乳嘟嘟采纳,获得10
12秒前
12秒前
文G完成签到,获得积分10
12秒前
13秒前
一一发布了新的文献求助20
14秒前
14秒前
科研通AI5应助周心雨采纳,获得10
15秒前
song发布了新的文献求助10
17秒前
科研通AI5应助第八大洋采纳,获得10
18秒前
18秒前
18秒前
天天玩发布了新的文献求助10
18秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787206
求助须知:如何正确求助?哪些是违规求助? 3332832
关于积分的说明 10257666
捐赠科研通 3048201
什么是DOI,文献DOI怎么找? 1673028
邀请新用户注册赠送积分活动 801580
科研通“疑难数据库(出版商)”最低求助积分说明 760287